Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057504    DOI: 10.1088/1674-1056/abd7de

Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure

Cai Zhou(周偲)1,3, Dengyu Zhu(朱登玉)1,3, Fufu Liu(刘福福)2, Cunfang Feng(冯存芳)1,3, Mingfang Zhang(张铭芳)1,3, Lei Ding(丁磊)1,3, Mingyao Xu(许明耀)1,3,†, and Shengxiang Wang(汪胜祥)1,3,‡
1 Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan Textile University, Wuhan 430200, China;
2 Key Laboratory for Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou 730000, China;
3 Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan Textile University, Wuhan 430200, China
Abstract  The in-plane effective 90° magnetization rotation of Co2FeAl thin film grown on PMN-PT substrate induced by the electric field is investigated at room temperature. The magnetic hysteresis loops under different positive and negative electric fields are obtained, which reveals remanent magnetization can be mediated by the electric field. Moreover, under positive electric fields, the obvious 90° magnetization rotation can be observed, while remanent magnetization is nearly unchanged under negative electric fields. The result is consistent with the electric field dependence of effective magnetic field, which can be attributed to the piezostrain effect in Co2FeAl/PMN-PT structure. In addition, the piezostrain-mediated 90° magnetization rotation can be demonstrated by the result of resonance field changing with electric field in the measurement of ferromagnetic resonance, which is promising for the design of future multiferroic devices.
Keywords:  electric field      90°      magnetization rotation      Co2FeAl/PMN-PT structure  
Received:  18 August 2020      Revised:  23 December 2020      Accepted manuscript online:  04 January 2021
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.30.Gw (Magnetic anisotropy)  
  32.30.Dx (Magnetic resonance spectra)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901163 and 61903280) and the Foundation of Wuhan Textile University (Grant Nos. 193128 and 205033).
Corresponding Authors:  Mingyao Xu, Shengxiang Wang     E-mail:;

Cite this article: 

Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥) Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure 2021 Chin. Phys. B 30 057504

[1] Goldman A 1999 Handbook of Modern Ferromagnetic Materials
[2] Chen A T, Wen Y, Fang B, Zhao Y L, Zhang Q, Chang Y S, Li P S, Wu H, Huang H L, Lu Y L, Zeng Z M, Cai J W, Han X F, Wu T, Zhang X X and Zhao Y G 2019 Nat. Commun. 10 243
[3] Hu J M, Chen L Q and Nan C W 2016 Adv. Mater. 28 15
[4] Song C, Cui B, Li F, Zhou X J and Pan F 2017 Prog. Mater. Sci. 87 33
[5] Guan M M, Wang L, Zhao S S, Zhou Z Y, Dong G H, Su W, Min T, Ma J, Hu Z Q, Ren W, Ye Z G, Nan C W and Liu M 2018 Adv. Mater. 30 1802902
[6] Spaldin N A and Ramesh R 2019 Nat. Mater. 18 203
[7] Han Y M, Nickle C, Zhang Z Y, Astier H P A G, Duffin T J, Qi D C, Wang Z, del Barco E, Thompson D and Nijhuis C A 2020 Nat. Mater. 19 843
[8] Cheng J H, Wang Y G and Xie D 2015 Chin. Phys. Lett. 32 017503
[9] Thiele C, Dörr K, Bilani O, Rödel J and Schultz L 2007 Phys. Rev. B 75 054408
[10] Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X, Ziemer K S, Harris V G and Sun N X 2009 Adv. Funct. Mater. 19 1826
[11] Zhou C, Zhang C, Yao J L and Jiang C J 2016 Appl. Phys. Lett. 109 112404
[12] Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K and Ono T 2011 Nat. Mater. 10 853
[13] Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y and Suzuki Y 2009 Nat. Nanotechnol. 4 158
[14] Gueye M, Wague B M, Zighem F, Belmeguenai M, Gaboe M S, Tiusan C, Mercone S and Faurie D 2014 Appl. Phys. Lett. 105 062409
[15] Wu T, Bur A, Wong K, Zhao P, Lynch C S, Amiri P K, Wang K L and Carman G P 2011 Appl. Phys. Lett. 98 262504
[16] Zhang S, Zhao Y G, Li P S, Yang J J, Rizwan S, Zhang J X, Seidel J, Qu T L, Yang Y J, Luo Z L, He Q, Zou T, Chen Q P, Wang J W, Yang L F, Sun Y, Wu Y Z, Xiao X, Jin X F, Huang J, Gao C, Han X F and Ramesh R 2012 Phys. Rev. Lett. 108 137203
[17] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater. 16 712
[18] Kumar P, Sharma S, Thakur O P, Prakash C and Goel T C 2004 Ceram. Int. 30 585
[19] Husain S, Kumar A, Chaudhary S and Svedlindh P 2016 AIP Conference Proceedings 1728 020072
[20] Lu Y, Jeong D Y, Cheng Z Y, Zhang Q M, Luo H S, Yin Z W and Viehland D 2001 Appl. Phys. Lett. 78 3109
[21] Wu T, Zhao P, Bao M Q, Bur A, Hockel J L, Wong K, Monhanchandra K P, Lynch C S and Carman G P 2011 J. Appl. Phys. 109 124101
[22] Dong W D, Finkel P, Amin A and Lynch C S 2012 Appl. Phys. Lett. 100 042903
[23] Yang S W, Peng R C, Jiang T, Liu Y K, Feng L, Wang J J, Chen L Q, Li X G and Nan C W 2014 Adv. Mater. 26 7091
[24] Zhou C, Zhang M F, Feng C F, Xu M Y, Wang S X and Jiang C J 2019 Phys. Chem. Chem. Phys. 21 21438
[25] Dunzhu G S, Zhao Y B, Jin Y, Zhou C and Jiang C J 2020 Chin. Phys. B 29 126701
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[5] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[6] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[7] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[8] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[9] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[10] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Band alignment in SiC-based one-dimensional van der Waals homojunctions
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华). Chin. Phys. B, 2021, 30(12): 126102.
[13] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[14] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
[15] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
No Suggested Reading articles found!