Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120501    DOI: 10.1088/1674-1056/accd49
GENERAL Prev   Next  

Temperature-induced logical resonance in the Hodgkin-Huxley neuron

Haiyou Deng(邓海游), Rong Gui(桂容), and Yuangen Yao(姚元根)
Department of Physics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
Abstract  Logical resonance has been demonstrated to be present in the FitzHugh-Nagumo (FHN) neuron, namely, the FHN neuron can operate as a reliable logic gate within an optimal parameter window. Here we attempt to extend the results to the more biologically realistic Hodgkin-Huxley (HH) model of neurons. In general, biological organisms have an optimal temperature at which the biological functions are most effective. In view of this, we examine if there is an optimal range of temperature where the HH neuron can work like a specific logic gate, and how temperature influences the logical resonance. Here we use the success probability P to measure the reliability of the specific logic gate. For AND logic gate, P increases with temperature T, reaches the maximum in an optimal window of T, and eventually decreases, which indicates the occurrence of the temperature-induced logical resonance phenomenon in the HH neuron. Moreover, single and double logical resonances can be induced by altering the frequency of the modulating periodic signal under the proper temperatures, suggesting the appearance of temperature-controlled transition of logical resonance. These results provide important clues for constructing neuron-based energy-efficient new-fashioned logical devices.
Keywords:  stochastic resonance      logical stochastic resonance      Hodgkin-Huxley neuron      temperature  
Received:  31 January 2023      Revised:  26 March 2023      Accepted manuscript online:  16 April 2023
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: This Project supported by the National Natural Science Foundation of China (Grant No.11804111).
Corresponding Authors:  Yuangen Yao     E-mail:  yyg@mail.hzau.edu.cn

Cite this article: 

Haiyou Deng(邓海游), Rong Gui(桂容), and Yuangen Yao(姚元根) Temperature-induced logical resonance in the Hodgkin-Huxley neuron 2023 Chin. Phys. B 32 120501

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[2] Gang H, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807
[3] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[4] Zaikin A A, Kurths J and Schimansky-Geier L 2000 Phys. Rev. Lett. 85 227
[5] Kreuz T, Luccioli S and Torcini A 2006 Phys. Rev. Lett. 97 238101
[6] Kish L B 2002 Phys. Lett. A 305 144
[7] Gammaitoni L 2007 Appl. Phys. Lett. 91 224104
[8] Murali K, Sinha S, Ditto W L and Bulsara A R 2009 Phys. Rev. Lett. 102 104101
[9] Suzuki Y and Asakawa N 2022 Polymers 14 747
[10] Kawahara T, Yamaguchi S, Maehashi K, Ohno Y, Matsumoto K and Kawai T 2010 Jpn. J. Appl. Phys. 49 02
[11] Pfeffer P, Hartmann F, Hofling S, Kamp M and Worschech L 2015 Phys. Rev. Appl. 4 014011
[12] Kanki T, Hotta Y, Asakawa N, Kawai T and Tanaka H 2010 Appl. Phys. Lett. 96 242108
[13] Yao Y E 2021 Pramana 95 77
[14] Zhang L, Song A and He J 2010 Phys. Rev. E 82 051106
[15] Cheng G, Liu W, Gui R and Yao Y 2020 Chaos Solitons & Fractals 131 109514
[16] Zhang H, Yang T, Xu W and Xu Y 2014 Nonlinear Dyn. 76 649
[17] Dari A, Kia B, Bulsara A R and Ditto W L 2011 Chaos 21 047521
[18] Zhang L, Zheng W, Xie F and Song A 2017 Phys. Rev. E 96 052203
[19] Yang H, Yao Y and Ren J 2022 Chin. J. Phys. 77 124
[20] Yao Y, Cheng G and Gui R 2020 Chaos 30 073125
[21] Gupta A, Sohane A, Kohar V, Murali K and Sinha S 2011 Phys. Rev. E 84 055201
[22] Kohar V, Murali K and Sinha S 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 2866
[23] Gui R, Wang Y, Yao Y and Cheng G 2020 Chaos Solitons & Fractals 138 109952
[24] Wang N and Song A 2015 Neurocomputing 155 80
[25] Cheng G H, Zheng S T, Dong J H, Xu Z Q and Gui R 2021 Chaos 31 053105
[26] Gui R, Li J X, Yao Y G and Cheng G H 2021 Chaos Solitons & Fractals 148 111043
[27] Wang N, Song A and Yang B 2017 Eur. Phys. J. B 90 117
[28] Yao Y and Yao C 2023 Nonlinear Dyn. 111 4807
[29] Yao Y G 2021 Chin. Phys. B 30 060503
[30] Aravind M, Murali K and Sinha S 2018 Phys. Lett. A 382 1581
[31] Yao Y and Ma J 2020 Int. J. Bifurc. Chaos 30 2050196
[32] Yao Y, Ma J, Gui R and Cheng G 2021 Chaos 31 023103
[33] Kohar V and Sinha S 2012 Phys. Lett. A 376 957
[34] Nobukawa S, Wagatsuma N, Nishimura H, Inagaki K and Yamanishi T 2022 IEEE Access 10 15699
[35] Yao Y G, Ma J, Gui R and Cheng G H 2021 Chaos Solitons & Fractals 152 111339
[36] Ashokkumar P, Aravindh M S, Venkatesan A and Lakshmanan M 2021 Chaos 31 063119
[37] Gui R, Yang Y D, Yao Y G and Cheng G H 2020 Chin. J. Phys. 68 178
[38] Aravindh M S, Gopal R, Venkatesan A and Lakshmanan M 2020 Pramana 94 78
[39] Wang N and Song A 2014 Phys. Lett. A 378 1588
[40] Zhang L, Zheng W B, Min F H and Song A G 2019 Phys. Lett. A 383 617
[41] Gui R, Zhang H Y, Cheng G H and Yao Y G 2020 Chaos 30 023119
[42] Yao Y 2022 Nonlinear Dyn. 107 3887
[43] Peterson M E, Daniel R M, Danson M J and Eisenthal R 2007 Biochem. J. 402 331
[44] Arcus V L, Prentice E J, Hobbs J K, Mulholland A J, Van der Kamp M W, Pudney C R, Parker E J and Schipper L A 2016 Biochemistry 55 1681
[45] Somero G N 1978 Annu. Rev. Ecol. Evol. S 9 1
[46] von der Ohe C G, Darian-Smith C, Garner C C and Heller H C 2006 J. Neurosci. 26 10590
[47] Benndorf K and Koopmann R 1993 Biophys. J. 65 1585
[48] Pekala D, Szkudlarek H and Raastad M 2016 Physiol. Rep. 4 e12981
[49] Song X, Wang H, Chen Y and Lai Y C 2019 Phys. Rev. E 100 032416
[50] Ding Q and Jia Y 2021 Chaos 31 053102
[51] Yao C, Xu F, Shuai J and Li X 2022 Physica A 596 127139
[52] Yang L J and Jia Y 2005 Biosystems 81 267
[1] Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
Kai Chen(陈凯), Jianguo Zhao(赵见国), Yu Ding(丁宇), Wenxiao Hu(胡文晓), Bin Liu(刘斌), Tao Tao(陶涛), Zhe Zhuang(庄喆), Yu Yan(严羽), Zili Xie(谢自力), Jianhua Chang(常建华), Rong Zhang(张荣), and Youdou Zheng(郑有炓). Chin. Phys. B, 2024, 33(1): 016801.
[2] Anti-Stokes/Stokes temperature calibration and its application in laser-heating diamond anvil cells
Minmin Zhao(赵旻旻), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), and Li Lei(雷力). Chin. Phys. B, 2023, 32(9): 090704.
[3] Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵). Chin. Phys. B, 2023, 32(9): 097701.
[4] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[5] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[6] A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园). Chin. Phys. B, 2023, 32(9): 097402.
[7] Loading uniform Ag3PO4 nanoparticles on three-dimensional peony-like WO3 for good stability and excellent selectivity towards NH3 at room temperature
Xingyan Shao(邵星炎), Fuchao Jia(贾福超), Tingting Liu(刘婷婷), Jiancheng Liu(刘健诚), Xiaomei Wang(王小梅), Guangchao Yin(尹广超), Na Lv(吕娜), Tong Zhou(周通), Ramachandran Rajan, and Bo Liu(刘波). Chin. Phys. B, 2023, 32(8): 080703.
[8] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[9] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
[10] Application of silicon carbide temperature monitors in 49-2 swimming-pool test reactor
Guang-Sheng Ning(宁广胜), Li-Min Zhang(张利民), Wei-Hua Zhong(钟巍华), Sheng-Hong Wang(王绳鸿), Xin-Yu Liu(刘心语), Ding-Ping Wang(汪定平), An-Ping He(何安平), Jian Liu(刘健), and Chang-Yi Zhang(张长义). Chin. Phys. B, 2023, 32(5): 056102.
[11] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[12] Weak signal detection method based on novel composite multistable stochastic resonance
Shangbin Jiao(焦尚彬), Rui Gao(高蕊), Qiongjie Xue(薛琼婕), and Jiaqiang Shi(史佳强). Chin. Phys. B, 2023, 32(5): 050202.
[13] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[14] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[15] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
No Suggested Reading articles found!