Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097402    DOI: 10.1088/1674-1056/acc934
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure

Yan-Qi Wang(王妍琪)1, Chuan-Zhao Zhang(张传钊)1, Jin-Quan Zhang(张金权)1, Song Li(李松)1, Meng Ju(巨濛)2,†, Wei-Guo Sun(孙伟国)3, Xi-Long Dou(豆喜龙)4, and Yuan-Yuan Jin(金园园)1,‡
1 Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China;
2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
3 College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China;
4 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  High pressure is an effective method to induce structural and electronic changes, creating novel high-pressure structures with excellent physical and chemical properties. Herein, we investigate the structural phase transition of hafnium dihydrogen (HfH2) in a pressure range of 0 GPa-500 GPa through the first-principles calculations and the crystal structure analysis by particle swarm optimization (CALYPSO) code. The high-pressure phase transition sequence of HfH2 is I4/mmmCmmaP-3m1 and the two phase transition pressure points are 220.21 GPa and 359.18 GPa, respectively. A newly trigonal P-3m1 structure with 10-fold coordination first appears as an energy superior structure under high pressure. These three structures are all metallic with the internal ionic bonding of Hf and H atoms. Moreover, the superconducting transition temperature (Tc) values of Cmma at 300 GPa and P-3m1 at 500 GPa are 3.439 K and 19.737 K, respectively. Interestingly, the superconducting transition temperature of the P-3m1 structure presents an upward trend with the pressure rising, which can be attributed to the increase of electron-phonon coupling caused by the enhanced Hf-d electronic density of states at Fermi level under high pressure.
Keywords:  transition metal dihydrogen      first principles      phase transition      superconducting transition temperature  
Received:  30 January 2023      Revised:  24 March 2023      Accepted manuscript online:  31 March 2023
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.25.F- (Transport properties)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.62.-c (Transition temperature variations, phase diagrams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804031 and 11904297), the Scientific Research Project of Education Department of Hubei Province, China (Grant No. Q20191301), the Fundamental Research Funds for the Central Universities (Grant No. SWUKT22049), and the Chongqing Talent Plan for Young Top Notch Talents, China (Grant No. 202005007).
Corresponding Authors:  Meng Ju, Yuan-Yuan Jin     E-mail:  mengju@swu.edu.cn;scujyy@163.com

Cite this article: 

Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园) A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure 2023 Chin. Phys. B 32 097402

[1] Kotmool K, Tsuppayakorn-aek P, Kaewmaraya T, Pinsook U, Ahuja R and Bovornratanaraks T 2020 J. Phys. Chem. C 124 14804
[2] Dekura H, Tsuchiya T, Kuwayama Y and Tsuchiya J 2011 Phys. Rev. Lett. 107 045701
[3] Xin S S, Du D C, Wang F X, Rui Q, Wang Q L, Zhao X L, Li J F, Yang D J, Zhu H Y and Wang X L 2021 Physica B 617 413139
[4] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[5] Errea I, Belli F, Monacelli L, Sanna A, Koretsune T, Tadano T, Bianco R, Calandra M, Arita R, Mauri F and Flores-Livas J A 2020 Nature 578 66
[6] Sun W G, Kuang X Y, Keen H D J, Lu C and Hermann A 2020 Phys. Rev. B 102 144524
[7] Papaconstantopoulos D A, Mehl M J and Chang P H 2020 Phys. Rev. B 101 060506
[8] Du M Y, Song H, Zhang Z H, Duan D F and Cui T 2022 Research 2022 9784309
[9] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463
[10] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 217001
[11] Xie H, Yao Y S, Feng X L, Duan D F, Song H, Zhang Z H, Jiang S Q, Redfern S A T, Kresin V Z, Pickard C J and Cui T 2020 Phys. Rev. Lett. 125 217001
[12] Kim D Y, Scheicher R H and Ahuja R 2009 Phys. Rev. Lett. 103 077002
[13] Yu S Y, Jia X J, Frapper G, Li D, Oganov A R, Zeng Q F and Zhang L T 2015 Sci. Rep. -UK 5 17764
[14] Zhuang Q, Jin X L, Lv Q Q, Li Y, Shao Z J, Liu Z, Li X, Zhang H D, Meng X, Bao K and Cui T 2017 Phys. Chem. Chem. Phys. 19 26280
[15] Kvashnin A G, Kruglov I A, Semenok D V and Oganov A R 2018 J. Phys. Chem. C 122 4731
[16] Ye X Q, Zarifi N, Zurek E, Hoffmann R and Ashcroft N W 2018 J. Phys. Chem. C 122 6298
[17] Kvashnin A G, Semenok D V, Kruglov I A, Wrona I A and Oganov A R 2018 ACS Appl. Mater. Interfaces 10 43809
[18] Qian S F, Sheng X W, Yan X Z, Chen Y M and Song B 2017 Phys. Rev. B 96 094513
[19] Feng X L, Zhang J R, Gao G Y, Liu H Y and Wang H 2015 RSC Adv. 5 59292
[20] Zheng S, Zhang S T, Sun Y, Zhang J, Lin J Y, Yang G C and Bergara A 2018 Front. Phys. -Lausanne 6 101
[21] Heil C, Cataldo S, Bachelet G B and Boeri L 2019 Phys. Rev. B 99 094513
[22] Sidhu S S and McGuire J C 1952 J. Appl. Phys. 23 1257
[23] Kuzovnikov M A and Tkacz M 2019 J. Phys. Chem. C 123 30059
[24] Gao K, Cui W W, Chen J, Wang Q F, Hao J, Shi J M, Liu C L, Botti S, Marques M A L and Li Y W 2021 Phys. Rev. B 104 214511
[25] Liu Y X, Huang X L, Duan D F, Tian F, Liu H Y, Li D, Zhao Z L, Sha X J, Yu H Y, Zhang H D, Liu B B and Cui T 2015 Sci. Rep. -UK 5 11381
[26] Duda A M, Szewczyk K A, Jarosik M W, Szcze'sniak K W, Sowi'nska M A and Szcze'sniak D 2018 Physica B 536 275
[27] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[28] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[29] Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
[30] Zhang J Q, Jin Y Y, Zhang C Z, Wang Y Q, Tang L B, Li S, Ju M, Wang J J, Sun W G and Dou X L 2022 RSC Adv. 12 11722
[31] Wan Z Y, Zhang C, Yang T Y, Xu W J and Zhang R Q 2022 New J. Phys. 24 113012
[32] Zhang C Z, Kuang X Y, Jin Y Y, Lu C, Zhou D W, Li P F, Bao G and Hermann A 2015 ACS Appl. Mater. Interfaces 7 26776
[33] Chen B L, Conway L J, Sun W G, Kuang X Y, Lu C and Hermann A 2021 Phys. Rev. B 103 035131
[34] Jin Y Y, Zhang J Q, Ling S, Wang Y Q, Li S, Kuang F G, Wu Z Y and Zhang C Z 2022 Chin. Phys. B 31 116104
[35] Jin Y Y, Huang W J, Zhang J Q, Li S, Cheng S B, Sun W G, Ju M and Zhang C Z 2023 Arab. J. Chem. 16 104546
[36] Kresse G and Furthmuüller J 1996 Phys. Rev. B 54 11169
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[41] Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, Schnering H G 1992 Angew. Chem., Int. Ed. Engl. 31 187
[42] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[43] Bader R F W 1985 Acc. Chem. Res. 18 9
[44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[45] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[46] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys. Condens. Mater. 21 395502
[47] Li X F, Hu Z Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 3538
[48] Chen C B, Tian F B, Duan D F, Bao K, Jin X L, Liu B B and Cui T 2014 J. Chem. Phys. 140 114703
[49] Li X F and Peng F 2017 Inorg. Chem. 56 13759
[50] Zhang J Q, Wang Y Q, Tang L B, Duan J Y, Wang J J, Li S, Ju M, Sun W G, Jin Y Y and Zhang C Z 2022 Arab. J. Chem. 15 104347
[51] Wang W J, Zhang C Z, Jin Y Y, Li S, Zhang W B, Kong P L, Xie C W, Du C Z, Liu Q and Zhang C H 2020 Sci. Rep. -UK 10 8868
[52] Quijano R, Coss R and Singh D J 2009 Phys. Rev. B 80 184103
[53] Gao G Y, Bergara A, Liu G T and Ma Y M 2013 J. Appl. Phys. 113 103512
[54] Shanavas K V, Lindsay L and Parker D S 2016 Sci. Rep. -UK 6 28102
[55] Miwa K and Fukumoto A 2002 Phys. Rev. B 65 155114
[56] Wang L Y, Duan D F, Yu H Y, Xie H, Huang X L, Ma Y B, Tian F B, Li D, Liu B B and Cui T 2018 Inorg. Chem. 57 181
[57] Liu Y X, Duan D F, Tian F B, Liu H Y, Wang C, Huang X L, Li D, Ma Y B, Liu B B and Cui T 2015 Inorg. Chem. 54 9924
[58] Zhang H D, Jin X L, Lv Y Z, Zhuang Q, Lv Q Q, Liu Y X, Bao K, Li D, Liu B B and Cui T 2015 Phys. Chem. Chem. Phys. 17 27630
[59] Zhong X, Wang H, Zhang J, Liu H Y, Zhang S T, Song H F, Yang G C, Zhang L J and Ma Y M 2016 Phys. Rev. Lett. 116 057002
[60] Liu Y X, Duan D F, Huang X L, Tian F, Li D, Sha X J, Wang C, Zhang H D, Yang T, Liu B B and Cui T 2015 J. Phys. Chem. C 119 15905
[61] Lyle M J, Pickard C J and Needs R J 2015 Proc. Natl. Acad. Sci. USA 112 6898
[62] Zhong X, Wang J Y, Zhang S T, Yang G C and Wang Y C 2015 Rsc Adv. 5 54253
[63] Xie S Y, Wang L H, Liu F Y, Li X B, Bai L G, Prakapenka V B, Cai Z H, Mao H K, Zhang S B and Liu H Z 2018 J. Phys. Chem. Lett. 9 2388
[64] Pauling L 1932 J. Am. Chem. Soc. 54 3570
[65] Zhuang Q, Jin X L, Cui T, Ma Y B, Lv Q Q, Li Y, Zhang H D, Meng X and Bao K 2017 Inorg. Chem. 56 3901
[66] Zhang S T, Lin J Y, Wang Y C, Yang G C, Bergara A and Ma Y M 2018 J. Phys. Chem. C 122 12022
[67] Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C and Ma Y M 2015 Sci. Rep. -UK 5 09948
[68] Liu Y X, Duan D F, Tian F B, Wang C, Ma Y B, Li D, Huang X L, Liu B B and Cui T 2016 Phys. Chem. Chem. Phys. 18 1516
[69] Lu C, Kuang X Y, Wang S J, Zhao Y R and Tan X M 2010 Europhys. Lett. 91 16002
[70] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[71] Haines J, Léger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[72] Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. H. 33 93
[73] Tsuchiya B, Sahara R, Oku M, Konashi K, Nagata S, Shikama T, Mizuseki H and Kawazoe Y 2010 J. Alloys Compd. 489 685
[1] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[2] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[3] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[4] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[5] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[6] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[7] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[8] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[9] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[10] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[11] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[12] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
[13] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[14] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[15] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
No Suggested Reading articles found!