CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure |
Yan-Qi Wang(王妍琪)1, Chuan-Zhao Zhang(张传钊)1, Jin-Quan Zhang(张金权)1, Song Li(李松)1, Meng Ju(巨濛)2,†, Wei-Guo Sun(孙伟国)3, Xi-Long Dou(豆喜龙)4, and Yuan-Yuan Jin(金园园)1,‡ |
1 Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China; 2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China; 3 College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China; 4 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract High pressure is an effective method to induce structural and electronic changes, creating novel high-pressure structures with excellent physical and chemical properties. Herein, we investigate the structural phase transition of hafnium dihydrogen (HfH2) in a pressure range of 0 GPa-500 GPa through the first-principles calculations and the crystal structure analysis by particle swarm optimization (CALYPSO) code. The high-pressure phase transition sequence of HfH2 is I4/mmm→Cmma→P-3m1 and the two phase transition pressure points are 220.21 GPa and 359.18 GPa, respectively. A newly trigonal P-3m1 structure with 10-fold coordination first appears as an energy superior structure under high pressure. These three structures are all metallic with the internal ionic bonding of Hf and H atoms. Moreover, the superconducting transition temperature (Tc) values of Cmma at 300 GPa and P-3m1 at 500 GPa are 3.439 K and 19.737 K, respectively. Interestingly, the superconducting transition temperature of the P-3m1 structure presents an upward trend with the pressure rising, which can be attributed to the increase of electron-phonon coupling caused by the enhanced Hf-d electronic density of states at Fermi level under high pressure.
|
Received: 30 January 2023
Revised: 24 March 2023
Accepted manuscript online: 31 March 2023
|
PACS:
|
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
74.25.F-
|
(Transport properties)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.62.-c
|
(Transition temperature variations, phase diagrams)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804031 and 11904297), the Scientific Research Project of Education Department of Hubei Province, China (Grant No. Q20191301), the Fundamental Research Funds for the Central Universities (Grant No. SWUKT22049), and the Chongqing Talent Plan for Young Top Notch Talents, China (Grant No. 202005007). |
Corresponding Authors:
Meng Ju, Yuan-Yuan Jin
E-mail: mengju@swu.edu.cn;scujyy@163.com
|
Cite this article:
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园) A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure 2023 Chin. Phys. B 32 097402
|
[1] Kotmool K, Tsuppayakorn-aek P, Kaewmaraya T, Pinsook U, Ahuja R and Bovornratanaraks T 2020 J. Phys. Chem. C 124 14804 [2] Dekura H, Tsuchiya T, Kuwayama Y and Tsuchiya J 2011 Phys. Rev. Lett. 107 045701 [3] Xin S S, Du D C, Wang F X, Rui Q, Wang Q L, Zhao X L, Li J F, Yang D J, Zhu H Y and Wang X L 2021 Physica B 617 413139 [4] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [5] Errea I, Belli F, Monacelli L, Sanna A, Koretsune T, Tadano T, Bianco R, Calandra M, Arita R, Mauri F and Flores-Livas J A 2020 Nature 578 66 [6] Sun W G, Kuang X Y, Keen H D J, Lu C and Hermann A 2020 Phys. Rev. B 102 144524 [7] Papaconstantopoulos D A, Mehl M J and Chang P H 2020 Phys. Rev. B 101 060506 [8] Du M Y, Song H, Zhang Z H, Duan D F and Cui T 2022 Research 2022 9784309 [9] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463 [10] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 217001 [11] Xie H, Yao Y S, Feng X L, Duan D F, Song H, Zhang Z H, Jiang S Q, Redfern S A T, Kresin V Z, Pickard C J and Cui T 2020 Phys. Rev. Lett. 125 217001 [12] Kim D Y, Scheicher R H and Ahuja R 2009 Phys. Rev. Lett. 103 077002 [13] Yu S Y, Jia X J, Frapper G, Li D, Oganov A R, Zeng Q F and Zhang L T 2015 Sci. Rep. -UK 5 17764 [14] Zhuang Q, Jin X L, Lv Q Q, Li Y, Shao Z J, Liu Z, Li X, Zhang H D, Meng X, Bao K and Cui T 2017 Phys. Chem. Chem. Phys. 19 26280 [15] Kvashnin A G, Kruglov I A, Semenok D V and Oganov A R 2018 J. Phys. Chem. C 122 4731 [16] Ye X Q, Zarifi N, Zurek E, Hoffmann R and Ashcroft N W 2018 J. Phys. Chem. C 122 6298 [17] Kvashnin A G, Semenok D V, Kruglov I A, Wrona I A and Oganov A R 2018 ACS Appl. Mater. Interfaces 10 43809 [18] Qian S F, Sheng X W, Yan X Z, Chen Y M and Song B 2017 Phys. Rev. B 96 094513 [19] Feng X L, Zhang J R, Gao G Y, Liu H Y and Wang H 2015 RSC Adv. 5 59292 [20] Zheng S, Zhang S T, Sun Y, Zhang J, Lin J Y, Yang G C and Bergara A 2018 Front. Phys. -Lausanne 6 101 [21] Heil C, Cataldo S, Bachelet G B and Boeri L 2019 Phys. Rev. B 99 094513 [22] Sidhu S S and McGuire J C 1952 J. Appl. Phys. 23 1257 [23] Kuzovnikov M A and Tkacz M 2019 J. Phys. Chem. C 123 30059 [24] Gao K, Cui W W, Chen J, Wang Q F, Hao J, Shi J M, Liu C L, Botti S, Marques M A L and Li Y W 2021 Phys. Rev. B 104 214511 [25] Liu Y X, Huang X L, Duan D F, Tian F, Liu H Y, Li D, Zhao Z L, Sha X J, Yu H Y, Zhang H D, Liu B B and Cui T 2015 Sci. Rep. -UK 5 11381 [26] Duda A M, Szewczyk K A, Jarosik M W, Szcze'sniak K W, Sowi'nska M A and Szcze'sniak D 2018 Physica B 536 275 [27] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116 [28] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063 [29] Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503 [30] Zhang J Q, Jin Y Y, Zhang C Z, Wang Y Q, Tang L B, Li S, Ju M, Wang J J, Sun W G and Dou X L 2022 RSC Adv. 12 11722 [31] Wan Z Y, Zhang C, Yang T Y, Xu W J and Zhang R Q 2022 New J. Phys. 24 113012 [32] Zhang C Z, Kuang X Y, Jin Y Y, Lu C, Zhou D W, Li P F, Bao G and Hermann A 2015 ACS Appl. Mater. Interfaces 7 26776 [33] Chen B L, Conway L J, Sun W G, Kuang X Y, Lu C and Hermann A 2021 Phys. Rev. B 103 035131 [34] Jin Y Y, Zhang J Q, Ling S, Wang Y Q, Li S, Kuang F G, Wu Z Y and Zhang C Z 2022 Chin. Phys. B 31 116104 [35] Jin Y Y, Huang W J, Zhang J Q, Li S, Cheng S B, Sun W G, Ju M and Zhang C Z 2023 Arab. J. Chem. 16 104546 [36] Kresse G and Furthmuüller J 1996 Phys. Rev. B 54 11169 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [40] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 [41] Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, Schnering H G 1992 Angew. Chem., Int. Ed. Engl. 31 187 [42] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [43] Bader R F W 1985 Acc. Chem. Res. 18 9 [44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [45] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 [46] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys. Condens. Mater. 21 395502 [47] Li X F, Hu Z Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 3538 [48] Chen C B, Tian F B, Duan D F, Bao K, Jin X L, Liu B B and Cui T 2014 J. Chem. Phys. 140 114703 [49] Li X F and Peng F 2017 Inorg. Chem. 56 13759 [50] Zhang J Q, Wang Y Q, Tang L B, Duan J Y, Wang J J, Li S, Ju M, Sun W G, Jin Y Y and Zhang C Z 2022 Arab. J. Chem. 15 104347 [51] Wang W J, Zhang C Z, Jin Y Y, Li S, Zhang W B, Kong P L, Xie C W, Du C Z, Liu Q and Zhang C H 2020 Sci. Rep. -UK 10 8868 [52] Quijano R, Coss R and Singh D J 2009 Phys. Rev. B 80 184103 [53] Gao G Y, Bergara A, Liu G T and Ma Y M 2013 J. Appl. Phys. 113 103512 [54] Shanavas K V, Lindsay L and Parker D S 2016 Sci. Rep. -UK 6 28102 [55] Miwa K and Fukumoto A 2002 Phys. Rev. B 65 155114 [56] Wang L Y, Duan D F, Yu H Y, Xie H, Huang X L, Ma Y B, Tian F B, Li D, Liu B B and Cui T 2018 Inorg. Chem. 57 181 [57] Liu Y X, Duan D F, Tian F B, Liu H Y, Wang C, Huang X L, Li D, Ma Y B, Liu B B and Cui T 2015 Inorg. Chem. 54 9924 [58] Zhang H D, Jin X L, Lv Y Z, Zhuang Q, Lv Q Q, Liu Y X, Bao K, Li D, Liu B B and Cui T 2015 Phys. Chem. Chem. Phys. 17 27630 [59] Zhong X, Wang H, Zhang J, Liu H Y, Zhang S T, Song H F, Yang G C, Zhang L J and Ma Y M 2016 Phys. Rev. Lett. 116 057002 [60] Liu Y X, Duan D F, Huang X L, Tian F, Li D, Sha X J, Wang C, Zhang H D, Yang T, Liu B B and Cui T 2015 J. Phys. Chem. C 119 15905 [61] Lyle M J, Pickard C J and Needs R J 2015 Proc. Natl. Acad. Sci. USA 112 6898 [62] Zhong X, Wang J Y, Zhang S T, Yang G C and Wang Y C 2015 Rsc Adv. 5 54253 [63] Xie S Y, Wang L H, Liu F Y, Li X B, Bai L G, Prakapenka V B, Cai Z H, Mao H K, Zhang S B and Liu H Z 2018 J. Phys. Chem. Lett. 9 2388 [64] Pauling L 1932 J. Am. Chem. Soc. 54 3570 [65] Zhuang Q, Jin X L, Cui T, Ma Y B, Lv Q Q, Li Y, Zhang H D, Meng X and Bao K 2017 Inorg. Chem. 56 3901 [66] Zhang S T, Lin J Y, Wang Y C, Yang G C, Bergara A and Ma Y M 2018 J. Phys. Chem. C 122 12022 [67] Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C and Ma Y M 2015 Sci. Rep. -UK 5 09948 [68] Liu Y X, Duan D F, Tian F B, Wang C, Ma Y B, Li D, Huang X L, Liu B B and Cui T 2016 Phys. Chem. Chem. Phys. 18 1516 [69] Lu C, Kuang X Y, Wang S J, Zhao Y R and Tan X M 2010 Europhys. Lett. 91 16002 [70] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [71] Haines J, Léger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1 [72] Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. H. 33 93 [73] Tsuchiya B, Sahara R, Oku M, Konashi K, Nagata S, Shikama T, Mizuseki H and Kawazoe Y 2010 J. Alloys Compd. 489 685 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|