Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054209    DOI: 10.1088/1674-1056/ac8f36
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films

Yuxin Li(李宇昕)1, Hailiang Chen(陈海良)1,†, Yingyue Zhang(张赢月)1, Qiang Chen(陈强)1, Biao Wu(武彪)1, Xiaoya Fan(樊晓亚)1, Yingchao Liu(刘英超)2, and Mingjian Ma(马明建)1
1 State Key Laboratory of Metastable Materials Science&Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
2 College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China
Abstract  A compact surface plasmon resonance (SPR) fiber optic sensor, being utilized to simultaneously measure refractive index (RI) and temperature, is proposed and experimentally demonstrated in this paper. One part of a no-core fiber (NCF) was coated with a silver (Ag) film, and the other part was coated with a silver/polydimethylsiloxane (Ag/PDMS) composite film to stimulate the SPR effect. Due to the two heterogeneous films, two dips appeared in the transmission spectrum and were used to achieve the dual-parameter measurements. The experimental results showed that the RI sensitivity reached 2121.43 nm/RIU and 0 nm/RIU, while the temperature sensitivity reached -0.32 nm/℃ and -2.21 nm/℃ for the two dips, respectively. Based on the obtained transfer matrix, the measurements of RI and temperature could be demodulated. This designed sensor showed the merits of simple structure, easy to implement, and high sensitivity, demonstrating application prospects in dual-parameter monitoring.
Keywords:  no-core fiber      surface plasmon resonance      temperature sensor  
Received:  18 April 2022      Revised:  01 July 2022      Accepted manuscript online:  05 September 2022
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2021203112), the National Natural Science Foundation of China (Grant No. 12074331), the National Key Research and Development Program of China (Grant No. 2019YFB2204001), and Basic Scientific Research Funds for universities in Hebei Province, China (Grant No. JQN2021019).
Corresponding Authors:  Hailiang Chen     E-mail:  hlchen@ysu.edu.cn

Cite this article: 

Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建) Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films 2023 Chin. Phys. B 32 054209

[1] Chen H L, Li S G, Li J S and Fan Z K 2015 IEEE Photon. Technol. Lett. 27 717
[2] Liu Y C, Chen H L, Li S G, Liu Q and Li J S 2017 Chin. Phys. B 26 104211
[3] Wong W R, Krupin O, Sekaran S D, Adikan F R M and Berini P 2014 Anal. Chem. 86 1735
[4] Bai Y T, Miao Y P, Zhang H M and Yao J Q 2020 J. Light. Technol. 38 840
[5] Wang M H, Chen H L, Jing X L, Li S G, Ma M J, Zhang W X and Zhang Y Y 2020 Optik 219 165044
[6] Momota M R and Hasan M R 2018 Opt. Mater. 76 287
[7] Homola J 2003 Anal. Bioanal. Chem. 377 528
[8] Wu L, Chu H S, Koh W S and Li E P 2010 Opt. Express 18 14395
[9] Liu Z H, Liu L, Zhu Z D, Zhang Y, Wei Y, Zhang Y X, Yang J and Yuan L B 2017 Opt. Commun. 403 290
[10] Chen H L, Li S G, An G W, Li J S, Fan Z K and Han Y 2015 Plasmonics 10 57
[11] Chen H L, Li S G, Ma M J, Fan Z K and Wu Y D 2015 Plasmonics 10 1239
[12] Chen Y and Ming H 2012 Photonic Sens. 2 37
[13] Zhang Y Y, Chen H L, Wang M Y, Liu Y D, Fan X Y, Chen Q and Wu B 2021 Mater. Res. Express 8 085201
[14] Yang X C, Lu Y, Liu B L and Yao J Q 2017 Appl. Opt. 56 4369
[15] Wang B T and Wang Q 2018 IEEE Sens. J. 18 8303
[16] Homola J 2008 Chem. Rev. 108 462
[17] Voisin V, Caucheteur C, Mégret P and Albert J 2011 Appl. Opt. 50 4257
[18] Zhang Y S, Li Y L, Wu Z Q, Hu S, Li Z B, Liu X Y, Yu J H, Huang Y M, Jing G Y, Lu H H, Guan H Y, Qiu W T, Dong J L, Zhu W G, Tang J Y, Luo Y H, Zhang J and Chen Z 2018 Opt. Mater. Express 8 3927
[19] Zhang Y, Liu M J, Zhang Y X, Liu Z H, Yang X H, Zhang J Z, Yang J and Yuan L B 2020 Appl. Opt. 59 1225
[20] Liu S H, Zhang H L, Li L T, Xiong L M and Shum P P 2019 IEEE Photon. Technol. Lett. 31 189
[21] Sun L L, Qin J, Tong Z R, Zhang W H and Gong M J 2018 Opt. Commun. 426 506
[22] Zhao Y, Wu Q L and Zhang Y N 2019 Measurement 148 106792
[23] Caucheteur C, Guo T and Albert J 2015 Anal. Bioanal. Chem. 407 3883
[24] Zhao Y, Deng Z Q and Wang Q 2014 Sens. Actuator B Chem. 192 229
[25] Zhang Y N, Tao S Y E B R, Wu Y Q and Han B 2019 IEEE Trans. Instrum. Meas. 68 4566
[26] Zhang Y Y, Chen H L, Wang M Y, Liu Y D, Fan X Y, Chen Q and Wu B 2021 Mater. Res. Express 8 085201
[27] Zhao Y, Wu Q L and Zhang Y N 2018 Sen. Actuator B-Chem. 258 822
[28] White I M Fan X 2008 Opt. Express 16 1020
[29] Liu Y D, Chen H L, Li H Y, Zhang S, Gao Z G, Feng Y H, Zhang Y Y and Li S G 2021 J. Opt. Soc. Am. B. 38 2536
[30] Wei Y, Wu P, Zhu Z D, Liu L, Liu C L, Hu J X, Wang S F and Zhang Y H 2018 Sensors 18 3210
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[6] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[9] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[12] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[13] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[14] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[15] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
No Suggested Reading articles found!