Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 074207    DOI: 10.1088/1674-1056/accb4c
RAPID COMMUNICATION Prev   Next  

Temperature-free mass tracking of a levitated nanoparticle

Yuan Tian(田原)1,2, Yu Zheng(郑瑜)1,2,†, Lyu-Hang Liu(刘吕航)1,2, Guang-Can Guo(郭光灿)1,2, and Fang-Wen Sun(孙方稳)1,2
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Mass measurement is an essential analytical tool in the characterization of materials. Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass. This method enables a temperature-independent mass measurement with the assistance of a sinusoidal electrostatic driving force. With this approach, we successfully track the change in properties of an optically levitated nanoparticle, such as mass, temperature, and electric charge, with air pressure. An abrupt change in the mass of silica nanoparticles is found to violate the Zhuravlev model. This method can be utilized to extend the mass analysis of materials, such as thermogravimetric analysis, to individual micro- or nano-particles.
Keywords:  optical levitation      nanoparticle      mass measurement      thermal desorption  
Received:  22 February 2023      Revised:  23 March 2023      Accepted manuscript online:  07 April 2023
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  06.30.Dr (Mass and density)  
  82.60.Qr (Thermodynamics of nanoparticles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104438 and 62225506), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-049), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Yu Zheng     E-mail:  bigz@ustc.edu.cn

Cite this article: 

Yuan Tian(田原), Yu Zheng(郑瑜), Lyu-Hang Liu(刘吕航), Guang-Can Guo(郭光灿), and Fang-Wen Sun(孙方稳) Temperature-free mass tracking of a levitated nanoparticle 2023 Chin. Phys. B 32 074207

[1] Xu C and Qu X G 2014 NPG Asia Mater. 6 e90
[2] Elsaesser A and Howard C V 2012 Adv. Drug Deliver. Rev. 64 129
[3] Yang S T, Liu Y, Wang Y W and Cao A N 2013 Small 9 1635
[4] Zampini G, Matino D, Quaglia G, Tarpani L, Gargaro M, Cecchetti F, Iorio A, Fallarino F and Latterini L 2019 Micropor. Mesopor. Mat. 287 220
[5] Mehmood A, Ghafar H, Yaqoob S, Gohar U F and Ahmad B 2017 J. Dev. Drugs 6 174
[6] Vertegel A A, Siegel R W and Dordick J S 2004 Langmuir 20 6800
[7] Cheng S Y, Show P L, Lau B F, Chang J S and Ling T C 2019 Trends Biotechnol. 37 1255
[8] Mout R, Moyano D F, Rana S and Rotello V M 2012 Chem. Soc. Rev. 41 2539
[9] Sanitá G, Carrese B and Lamberti A 2020 Front. Mol. Biosci. 7 587012
[10] Fan J D and Gao Y 2006 J. Exp. Nanosci. 1 457
[11] Iablokov V, Beaumont S K, Alayoglu S, Pushkarev V V, Specht C, Gao J H, Alivisatos A P, Kruse N and Somorjai G A 2012 Nano Lett. 12 3091
[12] Ricci F, Cuairan M T, Schell A W, Hebestreit E, Rica R A, Meyer N and Quidant R 2022 ACS Nano 16 8677
[13] Pal S L, Jana U, Manna P K, Mohanta G P and Manavalan R 2011 J. Appl. Pharm. Sci. 1 228
[14] Brucker G A and Rathbone G J 2010 Int. J. Mass Spectrom. 295 133
[15] Burg T P, Godin M, Knudsen S M, Shen W J, Carlson G, Foster J S, Babcock K and Manalis S R 2007 Nature 446 1066
[16] Ricci F, Cuairan M T, Conangla G P, Schell A W and Quidant R 2019 Nano Lett. 19 6711
[17] Zhang N, Zhu K, Xiong C Q, Jiang Y R, Chang H C and Nie Z X 2016 Anal. Chem. 88 5958
[18] Modena M M, Rühle B, Burg T P and Wuttke S 2019 Adv. Mater. 31 1901556
[19] McMurry P H, Wang X, Park K and Ehara K 2002 Aerosol Sci. Tech. 36 227
[20] Mateiu R, Davis Z J, Madsen D N, Molhave K, Boggild P, Rassmusen A M, Brorson M, Jacobsen C J H and Boisen A 2004 Microelectron. Eng. 73 670
[21] Chang H C 2009 Annu. Rev. Anal. Chem. 2 169
[22] Delić U 2019 Cavity cooling by coherent scattering of a levitated nanosphere in vacuum (Ph.D. dissertation) (Vienna: University of Vienna)
[23] Hebestreit E, Frimmer M, Reimann R, Dellago C, Ricci F and Novotny L 2018 Rev. Sci. Instrum. 89 033111
[24] Flajšmanová J, Šiler M, Jedlička P, Hrubý F, Brzobohatý O, Filip R and Zemánek P 2020 Sci. Rep. 10 1
[25] Tebbenjohanns F, Mattana M L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378
[26] Rondin L, Gieseler J, Ricci F, Quidant R, Dellago C and Novotny L 2017 Nat. Nanotechnol. 12 1130
[27] Dania L, Bykov D S, Knoll M, Mestres P and Northup T E 2021 Phys. Rev. Res. 3 013018
[28] Zheng Y, Zhou L M, Dong Y, Qiu C W, Chen X D, Guo G C and Sun F W 2020 Phys. Rev. Lett. 124 223603
[29] Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N and Aspelmeyer M 2020 Quantum Science and Technology 5 025006
[30] Hebestreit E 2017 Thermal properties of levitated nanoparticles (Ph. D. dissertation) (Zurich: ETH Zurich)
[31] Hebestreit E, Reimann R, Frimmer M and Novotny L 2018 Phys. Rev. A 97 043803
[32] Millen J, Deesuwan T, Barker P and Anders J 2014 Nat. Nanotechnol. 9 425
[33] Croissant J G, Butler K S, Zink J I and Brinker C J 2020 Nat. Rev. Mater. 5 886
[34] Saha R, Uppaluri R V S and Tiwari P 2018 Ind. Eng. Chem. Res. 57 6364
[35] Sheng H W 1996 Phil. Mag. Lett. 73 179
[36] Raoux S, Rettner C T, Jordan-Sweet J L, Kellock A J, Topuria T, Rice P M and Miller D C 2007 J. Appl. Phys. 102 094305
[37] Qadri S B, Skelton E F, Hsu D, Dinsmore A D, Yang J, Gray H F and Ratna B R 1999 Phys. Rev. B 60 9191
[38] Goldstein A N, Echer C M and Alivisatos A P 1992 Science 256 1425
[39] Gilbert B, Zhang H Z, Huang F, Finnegan M P, Waychunas G A and Banfield J F 2003 Geochem. T. 4 20
[40] Chaturvedi K R, Narukulla R and Sharma T 2021 J. Mol. Liq. 341 116905
[41] Peralta M E, Jadhav S A, Magnacca G, Scalarone D, Mártire D O, Parolo M E and Carlos L 2019 J. Colloid Interf. Sci. 544 198
[42] Tian Y, Zheng Y, Liu L H, Guo G C and Sun F W 2022 Appl. Phys. Lett. 120 221103
[43] Stöber W, Fink A and Bohn E 1968 J. Colloid Interf. Sci. 26 62
[44] Parnell S R, Washington A L, Parnell A J, Walsh A, Dalgliesh R M, Li F, Hamilton W A, Prevost S, Fairclough J P A and Pynn R 2016 Soft Matter 12 4709
[45] Zhuravlev L T 2000 Colloid Surface A 173 1
[46] Von Z F, Haluška M and Hirscher M 2003 Thermochim. Acta 404 251
[1] Theoretical investigation of F-P cavity mode manipulation by single gold nanoparticles
Xusheng Shi(史旭升), Zhiqiang Luo(罗志强), Zhi-Yuan Li(李志远), and Huakang Yu(虞华康). Chin. Phys. B, 2023, 32(8): 084204.
[2] Effect of magnetic nanoparticles on magnetic field homogeneity
Si-Lin Guo(郭斯琳), Wen-Tong Yi(易文通), and Zhuang-Zhuang Li(李壮壮). Chin. Phys. B, 2023, 32(5): 050203.
[3] Molecular fluorescence significantly enhanced by gold nanoparticles@zeolitic imidazolate framework-8
Yuyi Zhang(张钰伊), Yajie Bian(卞亚杰), Wei Zhang(张炜), Yiting Liu(刘易婷), Xiaolei Zhang(张晓磊),Mengdi Chen(陈梦迪), Bingwen Hu(胡炳文), and Qingyuan Jin(金庆原). Chin. Phys. B, 2023, 32(5): 054208.
[4] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[5] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[10] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[11] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
No Suggested Reading articles found!