ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals |
Qiwen Zheng(郑棋文)1, Wenguang Lu(卢文广)3, Jiaqing Xu(胥加青)2, Yunyang Ye(叶云洋)2,†, Xinmin Zhao(赵新民)1,‡, and Leyong Jiang(蒋乐勇)1 |
1 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; 2 School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China; 3 School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract The reflected group delay from a multilayer structure comprising a one-dimensional photonic crystal coated with a bulk Dirac semimetal (BDS) separated by a spacer layer is investigated theoretically. It is shown that the group delay of the reflected beam in this structure can be significantly negatively enhanced and switched from negative to positive. The enhanced group delay originates from the steep phase change caused by the excitation of the optical Tamm state at the interface between the BDS and spacer layer. Moreover, positive and negative group delays can be actively tuned through the Fermi energy and the relaxation time of the BDS. We believe that this enhanced and tunable delay scheme has important research significance for the fabrication of optical delay devices.
|
Received: 01 August 2022
Revised: 06 November 2022
Accepted manuscript online: 11 November 2022
|
PACS:
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
85.85.+j
|
(Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)
|
|
Fund: Project supported by the Scientific research project of Zhejiang Provincial Department of Education (Grant No. Y202250547), the Scientific Research Project of Wenzhou University of Technology (Grant No. ky202205), and the Hunan Provincial Natural Science Foundation of China (Grant No. 2022JJ30394). |
Corresponding Authors:
Yunyang Ye, Xinmin Zhao
E-mail: 20200285@wzu.edu.cn;zhaoxinmin@hunnu.edu.cn
|
Cite this article:
Qiwen Zheng(郑棋文), Wenguang Lu(卢文广), Jiaqing Xu(胥加青),Yunyang Ye(叶云洋), Xinmin Zhao(赵新民), and Leyong Jiang(蒋乐勇) Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals 2023 Chin. Phys. B 32 074208
|
[1] Rao V S C M, Gupta S D and Agarwal G S 2004 Opt. Lett. 29 307 [2] Steinberg A M and Chiao R Y 1994 Phys. Rev. A 49 3283 [3] Bigelowand M S, Lepeshkin N N and Boyd R W 2003 Science 301 5630 [4] Landauer R and Martin T 1994 Rev. Mod. Phys. 66 217 [5] Nanda L and Ramakrishna S A 2007 Phys. Rev. A 76 063807 [6] Mao D, Wang H Q, Zhang H Z, Zeng C, Du Y Q, He Z W, Sun Z P and Zhao J L 2021 Nat. Commun. 12 6712 [7] Xie J Y, Zhou L J, Zou Z, Wang J T, Li X W and Chen J P 2014 Opt. Express 22 817 [8] Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C and Yu I A 2013 Phys. Rev. Lett. 110 083601 [9] Yuan W, Shen W, Xie C, Yang C and Zhang Y 2022 Chin. Phys. B 31 087801 [10] Ravelo B, Lalléchére S, Rahajandraibe W and Wan F 2021 IEEE T. Electromagn. C 63 1248 [11] Ravelo B, Wan F, Nebhen J, Rahajandraibe W and Lalléchére S 2021 IEEE T. Circuits-II 68 2364 [12] Tang J, Xu J, Zhou H, Zheng Z W, Zhou Y X, Weng R, Wei Y Y, Liu Y, Liu Q W, Jiang L Y and Qian S Y 2019 Adv. Cond. Matter. Phys. 2019 9217613 [13] Jiang L Y, Dai X Y, Xiang Y J and Wen S C 2014 IEEE Photon. J. 6 3200109 [14] Wang L G and Zhu S Y 2006 Opt. Lett. 31 2223 [15] Yao H Y, Chen N C, Chang T H and Winful H G 2016 IEEE T. Microw. Theory 64 3121 [16] Xu J, Fu X M, Peng Y X, Wang S P, Zheng Z W, Zou X, Qian S Y and Jiang L Y 2021 Opt. Express 29 30348 [17] Fan Y C, Shen N H, Zhang F L, Wei Z Y, Li H Q, Zhao Q, Fu Q H, Zhang P, Koschny T and Soukoulis C M 2016 Adv. Opt. Mater. 4 1824 [18] Fan Y C, Shen N H, Zhang F L, Zhao Q, Wu H J, Fu Q H, Wei Z Y, Li H Q and Soukoulis C M 2019 Adv. Opt. Mater. 7 1800537 [19] Fan Y C, Wei Z Y, Li H Q, Chen H and Soukoulis C M 2013 Phys. Rev. B 88 241403 [20] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749 [21] Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Nat. Phys. 4 532 [22] Wang L, Wang L G and Zubairy M S 2017 J. Appl. Phys. 122 115301 [23] Xu J, Tang J, Peng Y X, Zheng Z W, Jin X L, Qian S Y, Guo J, Jiang L Y and Xiang Y J 2019 Results Phys. 15 102579 [24] Kavokin A V, Shelykh I A and Malpuech G 2005 Phys. Rev. B 72 233102 [25] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415 [26] Chen Z F, Han P, Leung C W, Wang Y, Hu M Z and Chen Y H 2012 Opt. Express 20 21618 [27] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Y, Vasil'ev A P, Mikhrin V S and Kavokin A V 2008 Appl. Phys. Lett. 92 251112 [28] Zhou H C, Yang G, Wang K, Long H and Lu P X 2010 Opt. Lett. 35 4112 [29] Zhang X L, Song J F, Li X B, Feng J and Sun H B 2012 Appl. Phys. Lett. 101 243901 [30] Zhang W L, Wang F, Rao Y J and Jiang Y 2014 Opt. Express 22 14524 [31] Ye Y Y, Xie M Z, Tang J and Ouyang J X 2019 Results Phys. 15 102779 [32] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Hans A, Bechtel, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630 [33] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M and Chen Y L 2014 Nat. Mater. 13 677 [34] Xu M, Yin X N, Huang J J, Liu M, Zhang H Y and Zhang Y P 2022 Chin. Phys. B 31 067802 [35] Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J and Wang L L 2018 Opt. Express 26 11471 [36] Ye Y Y, Xie M Z, Ouyang J X and Tang J 2020 Results Phys. 17 103035 [37] Kotov O V and Lozovik Y E 2016 Phys. Rev. B 93 235417 [38] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys. Rev. Lett. 90 113903 [39] Munday J N and Robertson W M 2007 Opt. Commun. 273 32 [40] You Q, Li Z F, Jiang L Y, Guo J, Dai X Y and Xiang Y J 2020 J. Phys. D: Appl. Phys. 53 015107 [41] Timusk T, Carbotte J P, Homes C C, Basov D N and Sharapov S G 2013 Phys. Rev. B 87 235121 [42] Wang H L, Wu J P, Guo J, Jiang L Y, Xiang Y J and Wen S C 2016 J. Phys. D: Appl. Phys. 49 255306 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|