Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127501    DOI: 10.1088/1674-1056/acc80b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of spin-reorientation transition of cell boundary phases on the temperature dependence of magnetization and coercivity in Sm2Co17 magnets

Si-Si Tu(涂思思)1,2, Lei Liu(刘雷)2,†, Bo Zhou(周波)2, Chuang-Hui Dong(董创辉)2, Li-Ming Ye(叶力铭)2, Ying-Li Sun(孙颖莉)2, Yong Ding(丁勇)2,‡, A-Ru Yan(闫阿儒)2, and Xin-Biao Mao(毛信表)1
1 College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 CISRI and NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  Four Sm2Co17 magnets with spin-reorientation transition (SRT) of cell boundary phases (CBPs) are prepared by liquid-phase sintering. The temperature of the SRT of CBPs (TSR1:5) is regulated from 125 K to 195 K by adding 0 wt.%, 3 wt.%, 6 wt.% and 9 wt.% Dy88Cu12 alloy powder. The effect of SRT of Sm2Co17 magnet CBPs on the temperature dependence of the magnetization (M-T) and coercivity (H-T) is systematically investigated. The temperature dependence of the magnetization is influenced by the SRT of CBPs. The M-T curves measured during the heating process are larger than those measured during the cooling process when T < TSR1:5. When T = TSR1:5 there is a bifurcation point. When T>TSR1:5 the M-T curves overlap and the M-T derivation curve shows that the magnetization of the magnet has low temperature dependence of magnetization above TSR1:5. With increasing TSR1:5, the initial temperature of the low temperature dependence of magnetization shifts towards a higher temperature. The coercivity temperature coefficient becomes positive as the SRT effect increases, and the temperature range of the positive coercivity temperature coefficient moves towards higher temperatures as TSR1:5 increases. This reveals that SRT of CBPs has little effect on the temperature dependence of magnetization above TSR1:5, while the temperature dependence of coercivity is optimized. The temperature range of magnetization and coercivity with low temperature dependence tends towards higher temperatures, which is conducive to the preparation of magnets with a low temperature coefficient at higher temperatures.
Keywords:  spin-reorientation transformation      low-temperature coefficient      Sm2Co17 magnets  
Received:  21 February 2023      Revised:  23 March 2023      Accepted manuscript online:  28 March 2023
PACS:  75.30.Gw (Magnetic anisotropy)  
  68.60.Dv (Thermal stability; thermal effects)  
  71.20.Eh (Rare earth metals and alloys)  
  75.50.Ww (Permanent magnets)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos.2021YFB3803003 and 2021YFB3503101), Youth Innovation Promotion Association of CAS (Grant No.2023311), Major Project of 'Science and Technology Innovation 2025' in Ningbo (Grant No.2020Z044), and Zhejiang Provincial Key Research and Development Program(Grant No.2021C01172).
Corresponding Authors:  Lei Liu, Yong Ding     E-mail:  liulei@nimte.ac.cn;dingyong@nimte.ac.cn

Cite this article: 

Si-Si Tu(涂思思), Lei Liu(刘雷), Bo Zhou(周波), Chuang-Hui Dong(董创辉), Li-Ming Ye(叶力铭), Ying-Li Sun(孙颖莉), Yong Ding(丁勇), A-Ru Yan(闫阿儒), and Xin-Biao Mao(毛信表) Effect of spin-reorientation transition of cell boundary phases on the temperature dependence of magnetization and coercivity in Sm2Co17 magnets 2023 Chin. Phys. B 32 127501

[1] Bergamini E, Ligorio G, Summa A, Vannozzi G, Cappozzo A and Sabatini A 2014 Sensors 14 18625
[2] Nazarahari M and Rouhani H 2021 Inf. Fusion 68 67
[3] Rong C, Zhang H, Shen B and Liu J P 2006 Appl. Phys. Lett. 88 042504
[4] Liu L, Liu Z, Zhang X, Zhang C Y, Li T Y, Lee D and Yan A R 2019 J. Magn. Magn. Mater. 473 376
[5] Li D, Xu E, Liu J and Du Y 1980 IEEE Trans. Magn. 16 988
[6] Gjoka M, Panagiotopoulos I, Niarchos D, Matthias T and Fidler J 2004 J. Alloys Compd. 367 262
[7] Chen C H, Gong W, Walmer M H, Liu S and Kuhl G E 2002 J. Appl. Phys. 91 8483
[8] Ji J G, Yang J B, Mao W H, Yang Y C, Li W and Yu X J 1998 Solid State Commun. 108 667
[9] Liu J F, Chui T, Dimitrov D and Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007
[10] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T and Schultz L 2006 Acta Mater. 54 997
[11] Yan A, Bollero A, Müller K H and Gutfleisch O 2002 Appl. Phys. Lett. 80 1243
[12] Liu S, Yang J, Doyle G, Potts G and Kuhl G E 2000 J. Appl. Phys. 87 6728
[13] Kronmüller H and Goll D 2006 J. Iron Steel Res. 13 39
[14] Zhao T S, Jin H M, Guo G H, Han X F and Chen H 1991 Phys. Rev. B 43 8593
[15] Shen J, Qian P and Chen N X J 2004 Phys. Chem. Solids 65 1307
[16] Banerjee D, Bahadur D, Suresh K G and Nigam A K 2006 Physica B 378 1091
[17] Liu L, Pan DL, Liu Z, Zhang H W, Li M, Chen R J, Liu X M, Yan A R, Lee D and Li W 2015 J. Magn. Magn. Mater. 374 634
[18] Liu Z, Liu L, Chen R J, Sun Y L, Lee D and Yan A R 2013 IEEE Trans. Magn. 49 5599
[1] Effect of seed layers on the static and dynamic magnetic properties of CoIr films with negative effective magnetocrystalline anisotropy
Tianyong Ma(马天勇), Sha Zhang(张莎), Chenhu Zhang(张晨虎), Zhiwei Li(李志伟), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2023, 32(12): 127503.
[2] Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers
Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺). Chin. Phys. B, 2023, 32(12): 127504.
[3] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[4] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
[5] Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn
Bo-Xi Zhang(张博熙), Ping Song(宋平), Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森). Chin. Phys. B, 2023, 32(8): 087502.
[6] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[7] Crystal growth of CeMn0.85Sb2: Absence of magnetic order of Ce-sublattice
Yong Li(李勇), Shan-Shan Miao(苗杉杉), Hai Feng(冯海),Huai-Xin Yang(杨槐馨), and You-Guo Shi(石友国). Chin. Phys. B, 2023, 32(6): 067501.
[8] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[11] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[12] Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics
Wei-Jiang Wu(吴维江), Da Xu(徐达), Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建强). Chin. Phys. B, 2022, 31(12): 127503.
[13] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[14] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[15] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
No Suggested Reading articles found!