|
|
Ultralow-temperature heat transport study of noncentrosymmetric superconductor CaPtAs |
Yimin Wan(万一民)1, Erjian Cheng(程二建)2,†, Yuxin Chen(陈宇鑫)3, Chengcheng Zhao(赵成成)1, Chengpeng Tu(涂成鹏)1, Dongzhe Dai(戴东喆)1, Xiaofan Yang(杨小帆)1, Lu Xin(辛路)1, Wu Xie(谢武)3, Huiqiu Yuan(袁辉球)3,4,‡, and Shiyan Li(李世燕)1,4,5,§ |
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China; 2 Leibniz Institute for Solid State and Materials Research(IFW-Dresden), 01069 Dresden, Germany; 3 Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China; 5 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China |
|
|
Abstract The noncentrosymmetric superconductor CaPtAs with time-reversal symmetry breaking in its superconducting state was previously proposed to host nodal superconductivity. Here, by employing ultralow-temperature thermal conductivity measurement on CaPtAs single crystal, we study its superconducting gap structure. A negligible residual linear term of thermal conductivity (κ0/T) in zero magnetic field and the field dependence of κ0/T indicate that CaPtAs has multiple superconducting gaps with a dominant s-wave component. This is consistent with recent nuclear quadrupole resonance measurements on CaPtAs. Our work puts a strong constraint on the theories to describe the superconducting pairing symmetry of CaPtAs.
|
Received: 19 September 2023
Revised: 10 October 2023
Accepted manuscript online: 13 October 2023
|
PACS:
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.12174064), the National Key R&D Program of China (Grant No.2022YFA1402200), and the Shanghai Municipal Science and Technology Major Project (Grant No.2019SHZDZX01). |
Corresponding Authors:
Erjian Cheng, Huiqiu Yuan, Shiyan Li
E-mail: erjian_cheng@163.com;hqyuan@zju.edu.cn;shiyan_li@fudan.edu.cn
|
Cite this article:
Yimin Wan(万一民), Erjian Cheng(程二建), Yuxin Chen(陈宇鑫), Chengcheng Zhao(赵成成), Chengpeng Tu(涂成鹏), Dongzhe Dai(戴东喆), Xiaofan Yang(杨小帆), Lu Xin(辛路), Wu Xie(谢武), Huiqiu Yuan(袁辉球), and Shiyan Li(李世燕) Ultralow-temperature heat transport study of noncentrosymmetric superconductor CaPtAs 2023 Chin. Phys. B 32 127403
|
[1] Norman M R 2011 Science 332 196 [2] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noël H, Sigrist H M and Rogl P 2004 Phys. Rev. Lett. 92 027003 [3] Smidman M, Salamon M B, Yuan H Q and Agterberg D F 2017 Rep. Prog. Phys. 80 036501 [4] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006 [5] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002 [6] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006 [7] Bauer E, Khan R T, Michor H and Royanian E 2009 Phys. Rev. B 80 064504 [8] Bonalde I, Brämer-Escamilla W and Bauer E 2005 Phys. Rev. Lett. 94 207002 [9] Sun Z X, Enayat M, Maldonado A, Lithgow C, Yelland E, Peets D C, Yaresko A, Schnyder A P and Wahl P 2015 Nat. Commun. 6 6633 [10] Wang M X, Xu Y, He L P, Zhang J, Hong X C, Cai P L, Wang Z B, Dong J K and Li S Y 2016 Phys. Rev. B 93 020503 [11] Maeda S, Matano K and Zheng G Q 2018 Phys. Rev. B 97 184510 [12] Xie W, Zhang P R, Shen B, Jiang W B, Pang G M, Shang T, Gao C, Smidman M and Yuan H Q 2020 Sci. China. Phys. Mech. Astron. 63 237412 [13] Shang T, Smidman M, Wang A, Chang L J, Baines C, Lee M K, Nie Z Y, Pang G M, Xie W, Jiang W B, Shi M, Medarde M, Shiroka T and Yuan H Q 2020 Phys. Rev. Lett. 124 207001 [14] Hu L H, Wang X P and Shang T 2021 Phys. Rev. B 104 054520 [15] Ono S and Shiozaki K 2022 Phys. Rev. X 12 011021 [16] Ono S, Po H C and Shiozaki K 2021 Phys. Rev. Res. 3 023086 [17] Nagase Y, Manago M, Hayashi J, Takeda K, Tou H, Matsuoka E, Sugawara H, Harima H and Kotegawa H 2023 Phys. Rev. B 107 104512 [18] Shakeripour H, Petrovic C and Taillefer L 2009 New J. Phys. 11 055065 [19] Gurevich A 2003 Phys. Rev. B 67 184515 [20] Gurevich A 2007 Physica C 456 160 [21] Buzea C and Yamashita T 2001 Supercond. Sci. Technol. 14 R115 [22] Maple M B, Chen J W, Lambert S E, Fisk Z, Smith J L, Ott H R, Brooks J S and Naughton M J 1985 Phys. Rev. Lett. 54 477 [23] Bay T V, Naka T, Huang Y K and de Visser A 2012 Phys. Rev. B 86 064515 [24] Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001 [25] He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 npj Quantum Materials 1 16014 [26] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R X, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M and Takagi H 2003 Phys. Rev. B 67 174520 [27] Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H and Taillefer L 2008 Phys. Rev. B 77 134501 [28] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003 [29] Proust C, Boaknin E, Hill R W, Taillefer L and Mackenzie A P 2002 Phys. Rev. Lett. 89 147003 [30] Lowell J and Sousa J B 1970 J. Low. Temp. Phys. 3 65 [31] Willis J O and Ginsberg D M 1976 Phys. Rev. B 14 1916 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|