Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127503    DOI: 10.1088/1674-1056/ac9b02
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics

Wei-Jiang Wu(吴维江), Da Xu(徐达), Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建强)
Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Abstract  When there is a certain amount of field inhomogeneity, the biased ferrimagnetic crystal can exhibit the higher-order magnetostatic (HMS) mode in addition to the uniform-precession Kittel mode. In cavity magnonics, we show the nonlinearity and heating-induced frequency shifts of the Kittel mode and HMS mode in a yttrium-iron-garnet (YIG) sphere. When the Kittel mode is driven to generate a certain number of excitations, the temperature of the whole YIG sample rises and the HMS mode can display an induced frequency shift, and vice versa. This cross effect provides a new method to study the magnetization dynamics and paves a way for novel cavity magnonic devices by including the heating effect as an operational degree of freedom.
Keywords:  magnon      magnetostatic mode      temperature      yttrium-iron-garnet (YIG)  
Received:  08 June 2022      Revised:  16 September 2022      Accepted manuscript online:  18 October 2022
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.30.Gw (Magnetic anisotropy)  
  85.70.Ge (Ferrite and garnet devices)  
  75.10.Hk (Classical spin models)  
Corresponding Authors:  Da Xu, Yi-Pu Wang     E-mail:  daxu@zju.edu.cn;yipuwang@zju.edu.cn

Cite this article: 

Wei-Jiang Wu(吴维江), Da Xu(徐达), Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建强) Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics 2022 Chin. Phys. B 31 127503

[1] Boyd R W 2020 Nonlinear Optics (London: Academic Press)
[2] Auere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 1705963
[3] Zhang X, Cao Q T, Wang Z, Liu Y, Qiu C W, Yang L, Gong Q and Xiao Y F 2019 Nat. Photon. 13 21
[4] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737
[5] Mesch M, Metzger B, Hentschel M and Giessen H 2016 Nano Lett. 16 3155
[6] Zhong J H, Vogelsang J, Yi J M, Wang D, Wittenbecher L, Mikaelsson S, Korte A, Chimeh A, Arnold C L, Schaaf P, Runge E, Huillier A L, Mikkelsen A and Lienau C 2020 Nat. Commun. 11 1464
[7] Hamilton M F, Blackstock D T and Ostrovsky L A 1999 J. Acoust. Soc. Am. 105 578
[8] Fang X, Wen J, Bonello B, Yin J and Yu D 2017 Nat. Commun. 8 1288
[9] Darabi A, Fang L, Mojahed A, Fronk M D, Vakakis A F and Leamy M J 2019 Phys. Rev. B 99 214305
[10] Nayfeh A H and Mook D T 2008 Nonlinear Oscillations (New York: John Wiley & Sons)
[11] Kartashov Y V, Astrakharchik G E, Malomed B A and Torner L 2019 Nat. Rev. Phys. 1 185
[12] Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S W, Sun Z P, Liu K H, Bai X D and Liu Z F 2020 Nat. Nanotechnol. 15 987
[13] Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M and Devoret M H 2010 Nat. Phys. 6 296
[14] Wu B J and Gao X 2008 Chin. Phys. Lett. 25 4006
[15] Nozaki K, Matsuo S, Fujii T, Takeda K, Shinya A, Kuramochi E and Notomi M 2019 Nat. Photon. 13 454
[16] Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser Photon. Rev. 10 177
[17] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003
[18] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603
[19] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401
[20] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002
[21] Bai L, Harder M, Chen Y P, Fan X, Xiao J Q and Hu C M 2015 Phys. Rev. Lett. 114 227201
[22] Cao Y, Yan P, Huebl H, Goennenwein S T B and Bauer G E W 2015 Phys. Rev. B 91 094423
[23] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914
[24] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405
[25] Zhang D, Wang X M, Li T F, Luo X Q, Wu W, Nori F and You J Q 2015 npj Quantum Inform. 1 15014
[26] Haigh J A, Nunnenkamp A, Ramsay A J and Ferguson A J 2016 Phys. Rev. Lett. 117 133602
[27] Maier-Flaig H, Harder M, Gross R, Huebl H and Gonnenwein S T B 2016 Phys. Rev. B 94 054433
[28] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M and Nakamura Y 2016 Phys. Rev. Lett. 116 223601
[29] Zhang X, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605
[30] Zhang D, Luo X Q, Wang Y P, Li T F and You J Q 2017 Nat. Commun. 8 1368
[31] Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M and You J Q 2018 Phys. Rev. Lett. 120 057202
[32] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[33] Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y and Usami K 2018 Phys. Rev. Lett. 120 133602
[34] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L and Hu C M 2018 Phys. Rev. Lett. 121 137203
[35] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, and Hu C M 2019 Phys. Rev. Lett. 123 127202
[36] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425
[37] Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W and Hu C M 2020 Phys. Rev. Lett. 125 147202
[38] Xu J, Zhong C, Han X, Jin D, Jiang L and Zhang X 2020 Phys. Rev. Lett. 125 237201
[39] Wolski S P, Lachance-Quirion D, Tabuchi Y, Kono S, Noguchi A, Usami K and Nakamura Y 2020 Phys. Rev. Lett. 125 117701
[40] Rao J W, Xu P C, Gui Y S, Wang Y P, Yang Y, Yao B, Dietrich J, Bridges G E, Fan X L, Xue D S and Hu C M 2021 Nat. Commun. 12 1933
[41] Xu J, Zhong C, Han X, Jin D, Jiang L and Zhang X 2021 Phys. Rev. Lett. 126 207202
[42] Potts C A, Varga E, Bittencourt V A S V, Kusminskiy S V and Davis J P 2021 Phys. Rev. X 11 031053
[43] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101
[44] Li J, Wang Y P, Wu W J, Zhu S Y and You J Q 2021 PRX Quantum 2 040344
[45] Li S F, He P, Cheng C Y, Zhou S M and Lai T S 2014 Chin. Phys. Lett. 31 017502
[46] Dillon J F and Jr 1958 Phys. Rev. 112 59
[47] Fletcher P C and Bell R O 1959 J. Appl. Phys. 30 687
[48] Graf J, Pfeifer H, Marquardt F and Kusminskiy S V 2018 Phys. Rev. B 98 241406
[49] Haigh J A, Lambert N J, Sharma S, Blanter Y M, Bauer G E W and Ramsay A J 2018 Phys. Rev. B 97 214423
[50] Osada A, Gloppe A, Nakamura Y and Usami K 2018 New J. Phys. 20 103018
[51] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410
[52] Zhang G Q, Wang Y P and You J Q 2019 Sci. China-Phys. Mech. Astron. 62 987511
[53] Kong C, Xiong H and Wu Y 2019 Phys. Rev. Appl. 12 034001
[54] Bi M X, Yan X H, Zhang Y and Xiao Y 2021 Phys. Rev. B 103 104411
[55] Shen R C, Wang Y P, Li J, Zhu S Y, Agarwal G S and You J Q 2021 Phys. Rev. Lett. 127 183202
[56] Gurevich A G and Melkov G A 2020 Magnetization Oscillations and Waves (Boca Raton: CRC Press)
[57] Li Y, Zhang W, Tyberkevych V, Kwok W K, Hoffmann A and Novosad V 2020 J. Appl. Phys. 128 130902
[58] Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E W and Blanter Y M 2022 Phys. Rep. 979 1
[59] Yuan H Y, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1
[60] Zhang C, Jia C, Shi Y, Jiang C, Xue D, Ong C K and Chai G 2021 Phys. Rev. B 103 184427
[61] Chumak A V, Kabos P, Wu M, et al. 2021 arXiv: 2111.00365
[62] Prabhakar A and Stancil D D 2009 Spin waves: Theory and applications (New York: Springer)
[63] Soykal Ö O and Flatté M E 2010 Phys. Rev. Lett. 104 077202
[64] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[65] Sanders D J and Walton D 1977 Phys. Rev. B 15 1489
[66] Hansen P, Röschmann P and Tolksdorf W 1974 J. Appl. Phys 45 2728
[67] Hansen P 1974 J. Appl. Phys. 45 3638
[68] Chai C Z, Hu X X, Zou C L, Guo G C and Dong C H 2019 Appl. Phys. Lett. 114 021101
[69] Lin F Q, Zhang S H, Zhao G X, Li H F, Zong W H and Li S D 2020 Chin. Phys. B 29 067601
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[6] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[10] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[11] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[12] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[13] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[14] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[15] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
No Suggested Reading articles found!