CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics |
Wei-Jiang Wu(吴维江), Da Xu(徐达)†, Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞)‡, and Jian-Qiang You(游建强) |
Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract When there is a certain amount of field inhomogeneity, the biased ferrimagnetic crystal can exhibit the higher-order magnetostatic (HMS) mode in addition to the uniform-precession Kittel mode. In cavity magnonics, we show the nonlinearity and heating-induced frequency shifts of the Kittel mode and HMS mode in a yttrium-iron-garnet (YIG) sphere. When the Kittel mode is driven to generate a certain number of excitations, the temperature of the whole YIG sample rises and the HMS mode can display an induced frequency shift, and vice versa. This cross effect provides a new method to study the magnetization dynamics and paves a way for novel cavity magnonic devices by including the heating effect as an operational degree of freedom.
|
Received: 08 June 2022
Revised: 16 September 2022
Accepted manuscript online: 18 October 2022
|
PACS:
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
85.70.Ge
|
(Ferrite and garnet devices)
|
|
75.10.Hk
|
(Classical spin models)
|
|
Corresponding Authors:
Da Xu, Yi-Pu Wang
E-mail: daxu@zju.edu.cn;yipuwang@zju.edu.cn
|
Cite this article:
Wei-Jiang Wu(吴维江), Da Xu(徐达), Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建强) Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics 2022 Chin. Phys. B 31 127503
|
[1] Boyd R W 2020 Nonlinear Optics (London: Academic Press) [2] Auere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 1705963 [3] Zhang X, Cao Q T, Wang Z, Liu Y, Qiu C W, Yang L, Gong Q and Xiao Y F 2019 Nat. Photon. 13 21 [4] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737 [5] Mesch M, Metzger B, Hentschel M and Giessen H 2016 Nano Lett. 16 3155 [6] Zhong J H, Vogelsang J, Yi J M, Wang D, Wittenbecher L, Mikaelsson S, Korte A, Chimeh A, Arnold C L, Schaaf P, Runge E, Huillier A L, Mikkelsen A and Lienau C 2020 Nat. Commun. 11 1464 [7] Hamilton M F, Blackstock D T and Ostrovsky L A 1999 J. Acoust. Soc. Am. 105 578 [8] Fang X, Wen J, Bonello B, Yin J and Yu D 2017 Nat. Commun. 8 1288 [9] Darabi A, Fang L, Mojahed A, Fronk M D, Vakakis A F and Leamy M J 2019 Phys. Rev. B 99 214305 [10] Nayfeh A H and Mook D T 2008 Nonlinear Oscillations (New York: John Wiley & Sons) [11] Kartashov Y V, Astrakharchik G E, Malomed B A and Torner L 2019 Nat. Rev. Phys. 1 185 [12] Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S W, Sun Z P, Liu K H, Bai X D and Liu Z F 2020 Nat. Nanotechnol. 15 987 [13] Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M and Devoret M H 2010 Nat. Phys. 6 296 [14] Wu B J and Gao X 2008 Chin. Phys. Lett. 25 4006 [15] Nozaki K, Matsuo S, Fujii T, Takeda K, Shinya A, Kuramochi E and Notomi M 2019 Nat. Photon. 13 454 [16] Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser Photon. Rev. 10 177 [17] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003 [18] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603 [19] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401 [20] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002 [21] Bai L, Harder M, Chen Y P, Fan X, Xiao J Q and Hu C M 2015 Phys. Rev. Lett. 114 227201 [22] Cao Y, Yan P, Huebl H, Goennenwein S T B and Bauer G E W 2015 Phys. Rev. B 91 094423 [23] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914 [24] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405 [25] Zhang D, Wang X M, Li T F, Luo X Q, Wu W, Nori F and You J Q 2015 npj Quantum Inform. 1 15014 [26] Haigh J A, Nunnenkamp A, Ramsay A J and Ferguson A J 2016 Phys. Rev. Lett. 117 133602 [27] Maier-Flaig H, Harder M, Gross R, Huebl H and Gonnenwein S T B 2016 Phys. Rev. B 94 054433 [28] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M and Nakamura Y 2016 Phys. Rev. Lett. 116 223601 [29] Zhang X, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605 [30] Zhang D, Luo X Q, Wang Y P, Li T F and You J Q 2017 Nat. Commun. 8 1368 [31] Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M and You J Q 2018 Phys. Rev. Lett. 120 057202 [32] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [33] Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y and Usami K 2018 Phys. Rev. Lett. 120 133602 [34] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L and Hu C M 2018 Phys. Rev. Lett. 121 137203 [35] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, and Hu C M 2019 Phys. Rev. Lett. 123 127202 [36] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425 [37] Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W and Hu C M 2020 Phys. Rev. Lett. 125 147202 [38] Xu J, Zhong C, Han X, Jin D, Jiang L and Zhang X 2020 Phys. Rev. Lett. 125 237201 [39] Wolski S P, Lachance-Quirion D, Tabuchi Y, Kono S, Noguchi A, Usami K and Nakamura Y 2020 Phys. Rev. Lett. 125 117701 [40] Rao J W, Xu P C, Gui Y S, Wang Y P, Yang Y, Yao B, Dietrich J, Bridges G E, Fan X L, Xue D S and Hu C M 2021 Nat. Commun. 12 1933 [41] Xu J, Zhong C, Han X, Jin D, Jiang L and Zhang X 2021 Phys. Rev. Lett. 126 207202 [42] Potts C A, Varga E, Bittencourt V A S V, Kusminskiy S V and Davis J P 2021 Phys. Rev. X 11 031053 [43] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101 [44] Li J, Wang Y P, Wu W J, Zhu S Y and You J Q 2021 PRX Quantum 2 040344 [45] Li S F, He P, Cheng C Y, Zhou S M and Lai T S 2014 Chin. Phys. Lett. 31 017502 [46] Dillon J F and Jr 1958 Phys. Rev. 112 59 [47] Fletcher P C and Bell R O 1959 J. Appl. Phys. 30 687 [48] Graf J, Pfeifer H, Marquardt F and Kusminskiy S V 2018 Phys. Rev. B 98 241406 [49] Haigh J A, Lambert N J, Sharma S, Blanter Y M, Bauer G E W and Ramsay A J 2018 Phys. Rev. B 97 214423 [50] Osada A, Gloppe A, Nakamura Y and Usami K 2018 New J. Phys. 20 103018 [51] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410 [52] Zhang G Q, Wang Y P and You J Q 2019 Sci. China-Phys. Mech. Astron. 62 987511 [53] Kong C, Xiong H and Wu Y 2019 Phys. Rev. Appl. 12 034001 [54] Bi M X, Yan X H, Zhang Y and Xiao Y 2021 Phys. Rev. B 103 104411 [55] Shen R C, Wang Y P, Li J, Zhu S Y, Agarwal G S and You J Q 2021 Phys. Rev. Lett. 127 183202 [56] Gurevich A G and Melkov G A 2020 Magnetization Oscillations and Waves (Boca Raton: CRC Press) [57] Li Y, Zhang W, Tyberkevych V, Kwok W K, Hoffmann A and Novosad V 2020 J. Appl. Phys. 128 130902 [58] Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E W and Blanter Y M 2022 Phys. Rep. 979 1 [59] Yuan H Y, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1 [60] Zhang C, Jia C, Shi Y, Jiang C, Xue D, Ong C K and Chai G 2021 Phys. Rev. B 103 184427 [61] Chumak A V, Kabos P, Wu M, et al. 2021 arXiv: 2111.00365 [62] Prabhakar A and Stancil D D 2009 Spin waves: Theory and applications (New York: Springer) [63] Soykal Ö O and Flatté M E 2010 Phys. Rev. Lett. 104 077202 [64] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098 [65] Sanders D J and Walton D 1977 Phys. Rev. B 15 1489 [66] Hansen P, Röschmann P and Tolksdorf W 1974 J. Appl. Phys 45 2728 [67] Hansen P 1974 J. Appl. Phys. 45 3638 [68] Chai C Z, Hu X X, Zou C L, Guo G C and Dong C H 2019 Appl. Phys. Lett. 114 021101 [69] Lin F Q, Zhang S H, Zhao G X, Li H F, Zong W H and Li S D 2020 Chin. Phys. B 29 067601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|