Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057701    DOI: 10.1088/1674-1056/ac81a8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved microwave dielectric properties of MgAl2O4 spinel ceramics through (Li1/3Ti2/3)3+ doping

Xiao Li(李潇)1, Xizhi Yang(杨习志)1, Yuanming Lai(赖元明)1,†, Qin Zhang(张芹)2, Baoyang Li(李宝阳)1, Cong Qi(戚聪)1, Jun Yin(殷俊)1, Fanshuo Wang(王凡硕)1, Chongsheng Wu(巫崇胜)1, and Hua Su(苏桦)2
1 School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A series of nominal compositions MgAl$_{2-x}$(Li$_{1/3}$Ti$_{2/3}$)$_{x}$O$_{4}$ ($x = 0$, 0.04, 0.08, 0.12, 0.16, and 0.20) ceramics were successfully prepared via the conventional solid-state reaction route. The phase compositions, microstructures, and microwave dielectric properties were investigated. The results of x-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that a single phase of MgAl$_{2-x}$(Li$_{1/3}$Ti$_{2/3}$)$_{x}$O$_{4}$ ceramics with a spinel structure was obtained at $x \le 0.12$, whereas the second phase of MgTi$_{2}$O$_{5}$ appeared when $x > 0.12$. The cell parameters were obtained by XRD refinement. As the $x$ values increased, the unit cell volume kept expanding. This phenomenon could be attributed to the partial substitution of (Li$_{1/3}$Ti$_{2/3}$)$^{3+}$ for Al$^{3+}$. Results showed that (Li$_{1/3}$Ti$_{2/3}$)$^{3+}$ doping into MgAl$_{2}$O$_{4}$ spinel ceramics effectively reduced the sintering temperature and improved the quality factor ($Q_{\rm f}$) values. Good microwave dielectric properties were achieved for a sample at $x = 0.20$ sintering at 1500 ${^\circ}$C in air for 4 h: dielectric constant $\varepsilon_{\rm r} =8.78$, temperature coefficient of resonant frequency $\tau_{\rm f} = -85 $ ppm/${^\circ}$C, and ${Q_{\rm f}} = 62 300 $ GHz. The $Q_{\rm f}$ value of the $x = 0.20$ sample was about 2 times higher than that of pure MgAl$_{2}$O$_{4}$ ceramics (31600 GHz). Thus, MgAl$_{2-x}$(Li$_{1/3}$Ti$_{2/3}$)$_{x}$O$_{4}$ ceramics with excellent microwave dielectric properties can be applied to 5G communications.
Keywords:  microwave dielectric ceramics      MgAl2O4 ceramic co-substitution      MgTi2O5      solid solubility limit  
Received:  02 June 2022      Revised:  12 July 2022      Accepted manuscript online:  18 July 2022
PACS:  77.22.-d (Dielectric properties of solids and liquids)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the Chengdu University of Technology (Grant No. KYQD2019 07728).
Corresponding Authors:  Yuanming Lai     E-mail:  laiyuanming19@cdut.edu.cn

Cite this article: 

Xiao Li(李潇), Xizhi Yang(杨习志), Yuanming Lai(赖元明), Qin Zhang(张芹), Baoyang Li(李宝阳),Cong Qi(戚聪), Jun Yin(殷俊), Fanshuo Wang(王凡硕), Chongsheng Wu(巫崇胜), and Hua Su(苏桦) Improved microwave dielectric properties of MgAl2O4 spinel ceramics through (Li1/3Ti2/3)3+ doping 2023 Chin. Phys. B 32 057701

[1] Chen Y, Xue S, Luo Q, Su H, Chen Q, Huang Z, Xu L, Cao W and Huang Z 2017 Chin. Phys. B 26 047701
[2] Liu Y H, Peng H Y, Yao X G, Mao M M, Song K X and Lin H X 2022 J. Adv. Dielectr. 12 2250004
[3] Li Y, Xu B, Xia S and Shi P 2020 J. Adv. Dielectr. 10 2050027
[4] Lai Y M, Zeng Y M, Han J, Liang X F, Zhong X L, Liu M Z, Duo B and Su H 2020 J. Eur. Ceram. Soc. 41 2602
[5] Lan X K, Li J, Zou Z Y, Xie M Q, Fan G F, Lu W Z and Lei W 2019 J. Am. Ceram. Soc. 102 5952
[6] Synkiewicz M B, Szwagierczak D, Kulawik J, Pałka N and Bajurko P R 2020 J. Eur. Ceram. Soc. 40 362
[7] Li Y X, Fu R, Gao M Y, Chen M S, Peng R and Lu Y C 2021 J. Electron. Mater. 50 3372
[8] Liu B, Sha K, Zhou M F, Song K X, Huang Y H and Hu C C 2021 J. Eur. Ceram. Soc. 41 5170
[9] Lai Y M, Su H, Wang G, Tang X L, Huang X, Liang X F, Zhang H W, Li Y X, Huang K and Wang X R 2019 J. Am. Ceram. Soc. 102 1893
[10] Du K, Song X Q, Zou Z Y, Fan J, Lu W Z and Lei W 2020 Mater. Res. Bull. 129 110887
[11] Surendran K P, Bijumon P V, Mohanan P and Sebastian M T 2005 Appl. Phys. A 81 823
[12] Qin T Y, Zhong C W, Qin Y, Tang B and Zhang S R 2020 Ceram. Int. 46 19046
[13] Kan A, Okazaki H, Takahashi S and Ogawa H 2018 Jpn. J. Appl. Phys. 57 11UE03-1
[14] Yang F, Lai Y M, Zeng Y M, Zhang Q, Han J, Zhong X L and Su H 2021 Ceram. Int. 47 22522
[15] Surendran K P, Santha N, Mohanan P and Sebastian M T 2004 Eur. Phys. J. B 41 301
[16] Blaakmeer E S, Rosciano F and van Eck E R H 2015 J. Phys. Chem. C. 119 7565
[17] Juan R C 1993 Phys. B 192 55
[18] Burhan U, Lei W, Yao Y F, Wang X C, Wang X H, Rehman M and Lu W Z 2018 J. Alloys Compd. 763 990
[19] Jing X L, Tang X L, Tang W H, Jing Y L, Li Y X and Su H 2019 Appl. Phys. A 125 415
[20] Otto H H 2015 World J. Condens. Matter Phys. 05 160
[21] Qin T Y, Zhong C W, Shang Y, Cao L, Wang M X, Tang B and Zhang S R 2021 J. Alloys Compd. 886 161278
[22] Reimanisa I E and Kleebeb H J 2007 Int. J. Mater. Res. 98 1273
[23] Kim E S, Chun B S and Yoon K H 2003 Mater. Sci. Eng. B-Adv. 99 93
[24] Ramarao S D and Murthy V R K 2013 Scr. Mater. 69 274
[25] Zhou H F, Huang J, Tan X H, Wang K G, Sun W D and Ruan H 2017 J. Mater. Sci.: Mater. Electron. 28 17009
[26] Shin H, Shin H K, Jung H S, Cho S Y and Hong K S 2005 Mater. Res. Bull. 40 2021
[27] Kim E S, Chun B S, Freer R and Cernik R J 2010 J. Eur. Ceram. Soc. 30 1731
[28] Kiran S R, Sreenivasulu G, Murthy V R K, Subramanian V and Murty B S 2012 J. Am. Ceram. Soc. 95 1973
[29] Jo H J and Kim E S 2016 J. Eur. Ceram. Soc. 36 1399
[30] Brown B I D and Shannon R D 1973 Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 29 266
[31] Takahashi S, Kan A and Ogawa H 2017 J. Eur. Ceram. Soc. 37 1001
[32] Kan A, Ogawa H and Ohsato H 2007 Jpn. J. Appl. Phys. 46 7108
[33] BROWN B I D and Wu K K 1976 Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 1957
[34] Li J, Fang L, Luo H, Tang Y and Li C C 2016 J. Eur. Ceram. Soc. 36 2143
[35] Brown B I D and Altermatt D 1985 Acta Crystallogr. Sect. B: Struct. Sci. 41 244
[36] Chen M D, Zhou Z H and Hu S Z 2002 Chin. Sci. Bull. 47 978
[37] Brese N E and O'Keeffe M 1991 Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 47 192
[38] Song X Q, Du K, Li J, Lan X K, Lu W Z, Wang X H and Lei W 2019 Ceram. Int. 45 279
[39] Liou Y C and Yang S L 2007 Mater. Sci. Eng. B 142 116
[1] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[2] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
[3] Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application
J Mohammed, A B Suleiman, Tchouank Tekou Carol T, H Y Hafeez, Jyoti Sharma, Pradip K Maji, Sachin Godara Kumar, A K Srivastava. Chin. Phys. B, 2018, 27(12): 128104.
[4] Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate
Kai-Lun Zhang(张凯伦), Zhi-Ling Hou(侯志灵), Song Bi(毕松), Hui-Min Fang(房惠敏). Chin. Phys. B, 2017, 26(12): 127802.
[5] Single-layer broadband planar antenna using ultrathin high-efficiency focusing metasurfaces
Hai-Sheng Hou(侯海生), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Wen-Long Guo(郭文龙), Tang-jing Li(李唐景), Tong Cai(蔡通). Chin. Phys. B, 2017, 26(5): 057701.
[6] Study on the dielectric properties of Mg-doped NaBiTi6O14 ceramics
Yong Chen(陈勇), Simin Xue(薛思敏), Qian Luo(骆迁), Huyin Su(苏虎音), Qi Chen(陈琪), Zhen Huang(黄镇), Linfang Xu(徐玲芳), Wanqiang Cao(曹万强), Zhaoxiang Huang(黄兆祥). Chin. Phys. B, 2017, 26(4): 047701.
[7] CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics sintered with Ag electrodes at 900℃ for multilayer piezoelectric actuator
Muhammad Adnan Qaiser, Ahmad Hussain, Yuqing Xu(徐玉青), Yaojin Wang(汪尧进), Yiping Wang(王一平), Ying Yang(杨颖), Guoliang Yuan(袁国亮). Chin. Phys. B, 2017, 26(3): 037702.
[8] Dielectric and piezoelectric properties of (110) oriented Pb(Zr1-xTix)O3 thin films
Jian-Hua Qiu(邱建华), Zhi-Hui Chen(陈智慧), Xiu-Qin Wang(王秀琴), Ning-Yi Yuan(袁宁一), Jian-Ning Ding(丁建宁). Chin. Phys. B, 2016, 25(5): 057701.
[9] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[10] The interface density dependence of the electrical properties of 0.9Pb(Sc0.5Ta0.5)O3-0.1PbTiO3/0.55Pb(Sc0.5Ta0.5)O3-0.45PbTiO3 multilayer thin films
Li Xue-Dong (李雪冬), Liu Hong (刘洪), Wu Jia-Gang (吴家刚), Liu Gang (刘刚), Xiao Ding-Quan (肖定全), Zhu Jian-Guo (朱建国). Chin. Phys. B, 2015, 24(10): 107701.
[11] Piezoelectric and electro—optic properties of tetragonal (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals by phenomenological theory
Qiu Jian-Hua (邱建华), Wang Xiu-Qin (王秀琴), Yuan Ning-Yi (袁宁一), Ding Jian-Ning (丁建宁). Chin. Phys. B, 2015, 24(7): 077701.
[12] Dielectric and ferroelectric properties of Sr4CaSmTi3Nb7O30 with tetragonal tungsten bronze structure
Gong Gao-Shang (龚高尚), Fang Yu-Jiao (方玉娇), Huang Shuai (黄帅), Yin Chong-Yang (尹重阳), Yuan Song-Liu (袁松柳), Wang Li-Guang (王丽光). Chin. Phys. B, 2014, 23(9): 097701.
[13] Multiferroic properties in terbium orthoferrite
Song Yu-Quan (宋育全), Zhou Wei-Ping (周卫平), Fang Yong (房勇), Yang Yan-Ting (杨艳婷), Wang Liao-Yu (王辽宇), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(7): 077505.
[14] Electronic and magnetic properties of BiFeO3 with intrinsic defects:First-principles prediction
Yang Rui-Peng (杨瑞鹏), Lin Si-Xian (林思贤), Fang Xiao-Gong (方潇功), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Zeng Min (曾敏), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2014, 23(6): 067102.
[15] Effect of heating treatment on trap level distribution in polyamide 66 film electrets
Xu Pei (徐佩), Zhang Xing-Yuan (张兴元). Chin. Phys. B, 2014, 23(3): 037701.
No Suggested Reading articles found!