CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved microwave dielectric properties of MgAl2O4 spinel ceramics through (Li1/3Ti2/3)3+ doping |
Xiao Li(李潇)1, Xizhi Yang(杨习志)1, Yuanming Lai(赖元明)1,†, Qin Zhang(张芹)2, Baoyang Li(李宝阳)1, Cong Qi(戚聪)1, Jun Yin(殷俊)1, Fanshuo Wang(王凡硕)1, Chongsheng Wu(巫崇胜)1, and Hua Su(苏桦)2 |
1 School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China; 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract A series of nominal compositions MgAl$_{2-x}$(Li$_{1/3}$Ti$_{2/3}$)$_{x}$O$_{4}$ ($x = 0$, 0.04, 0.08, 0.12, 0.16, and 0.20) ceramics were successfully prepared via the conventional solid-state reaction route. The phase compositions, microstructures, and microwave dielectric properties were investigated. The results of x-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that a single phase of MgAl$_{2-x}$(Li$_{1/3}$Ti$_{2/3}$)$_{x}$O$_{4}$ ceramics with a spinel structure was obtained at $x \le 0.12$, whereas the second phase of MgTi$_{2}$O$_{5}$ appeared when $x > 0.12$. The cell parameters were obtained by XRD refinement. As the $x$ values increased, the unit cell volume kept expanding. This phenomenon could be attributed to the partial substitution of (Li$_{1/3}$Ti$_{2/3}$)$^{3+}$ for Al$^{3+}$. Results showed that (Li$_{1/3}$Ti$_{2/3}$)$^{3+}$ doping into MgAl$_{2}$O$_{4}$ spinel ceramics effectively reduced the sintering temperature and improved the quality factor ($Q_{\rm f}$) values. Good microwave dielectric properties were achieved for a sample at $x = 0.20$ sintering at 1500 ${^\circ}$C in air for 4 h: dielectric constant $\varepsilon_{\rm r} =8.78$, temperature coefficient of resonant frequency $\tau_{\rm f} = -85 $ ppm/${^\circ}$C, and ${Q_{\rm f}} = 62 300 $ GHz. The $Q_{\rm f}$ value of the $x = 0.20$ sample was about 2 times higher than that of pure MgAl$_{2}$O$_{4}$ ceramics (31600 GHz). Thus, MgAl$_{2-x}$(Li$_{1/3}$Ti$_{2/3}$)$_{x}$O$_{4}$ ceramics with excellent microwave dielectric properties can be applied to 5G communications.
|
Received: 02 June 2022
Revised: 12 July 2022
Accepted manuscript online: 18 July 2022
|
PACS:
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
Fund: Project supported by the Chengdu University of Technology (Grant No. KYQD2019 07728). |
Corresponding Authors:
Yuanming Lai
E-mail: laiyuanming19@cdut.edu.cn
|
Cite this article:
Xiao Li(李潇), Xizhi Yang(杨习志), Yuanming Lai(赖元明), Qin Zhang(张芹), Baoyang Li(李宝阳),Cong Qi(戚聪), Jun Yin(殷俊), Fanshuo Wang(王凡硕), Chongsheng Wu(巫崇胜), and Hua Su(苏桦) Improved microwave dielectric properties of MgAl2O4 spinel ceramics through (Li1/3Ti2/3)3+ doping 2023 Chin. Phys. B 32 057701
|
[1] Chen Y, Xue S, Luo Q, Su H, Chen Q, Huang Z, Xu L, Cao W and Huang Z 2017 Chin. Phys. B 26 047701 [2] Liu Y H, Peng H Y, Yao X G, Mao M M, Song K X and Lin H X 2022 J. Adv. Dielectr. 12 2250004 [3] Li Y, Xu B, Xia S and Shi P 2020 J. Adv. Dielectr. 10 2050027 [4] Lai Y M, Zeng Y M, Han J, Liang X F, Zhong X L, Liu M Z, Duo B and Su H 2020 J. Eur. Ceram. Soc. 41 2602 [5] Lan X K, Li J, Zou Z Y, Xie M Q, Fan G F, Lu W Z and Lei W 2019 J. Am. Ceram. Soc. 102 5952 [6] Synkiewicz M B, Szwagierczak D, Kulawik J, Pałka N and Bajurko P R 2020 J. Eur. Ceram. Soc. 40 362 [7] Li Y X, Fu R, Gao M Y, Chen M S, Peng R and Lu Y C 2021 J. Electron. Mater. 50 3372 [8] Liu B, Sha K, Zhou M F, Song K X, Huang Y H and Hu C C 2021 J. Eur. Ceram. Soc. 41 5170 [9] Lai Y M, Su H, Wang G, Tang X L, Huang X, Liang X F, Zhang H W, Li Y X, Huang K and Wang X R 2019 J. Am. Ceram. Soc. 102 1893 [10] Du K, Song X Q, Zou Z Y, Fan J, Lu W Z and Lei W 2020 Mater. Res. Bull. 129 110887 [11] Surendran K P, Bijumon P V, Mohanan P and Sebastian M T 2005 Appl. Phys. A 81 823 [12] Qin T Y, Zhong C W, Qin Y, Tang B and Zhang S R 2020 Ceram. Int. 46 19046 [13] Kan A, Okazaki H, Takahashi S and Ogawa H 2018 Jpn. J. Appl. Phys. 57 11UE03-1 [14] Yang F, Lai Y M, Zeng Y M, Zhang Q, Han J, Zhong X L and Su H 2021 Ceram. Int. 47 22522 [15] Surendran K P, Santha N, Mohanan P and Sebastian M T 2004 Eur. Phys. J. B 41 301 [16] Blaakmeer E S, Rosciano F and van Eck E R H 2015 J. Phys. Chem. C. 119 7565 [17] Juan R C 1993 Phys. B 192 55 [18] Burhan U, Lei W, Yao Y F, Wang X C, Wang X H, Rehman M and Lu W Z 2018 J. Alloys Compd. 763 990 [19] Jing X L, Tang X L, Tang W H, Jing Y L, Li Y X and Su H 2019 Appl. Phys. A 125 415 [20] Otto H H 2015 World J. Condens. Matter Phys. 05 160 [21] Qin T Y, Zhong C W, Shang Y, Cao L, Wang M X, Tang B and Zhang S R 2021 J. Alloys Compd. 886 161278 [22] Reimanisa I E and Kleebeb H J 2007 Int. J. Mater. Res. 98 1273 [23] Kim E S, Chun B S and Yoon K H 2003 Mater. Sci. Eng. B-Adv. 99 93 [24] Ramarao S D and Murthy V R K 2013 Scr. Mater. 69 274 [25] Zhou H F, Huang J, Tan X H, Wang K G, Sun W D and Ruan H 2017 J. Mater. Sci.: Mater. Electron. 28 17009 [26] Shin H, Shin H K, Jung H S, Cho S Y and Hong K S 2005 Mater. Res. Bull. 40 2021 [27] Kim E S, Chun B S, Freer R and Cernik R J 2010 J. Eur. Ceram. Soc. 30 1731 [28] Kiran S R, Sreenivasulu G, Murthy V R K, Subramanian V and Murty B S 2012 J. Am. Ceram. Soc. 95 1973 [29] Jo H J and Kim E S 2016 J. Eur. Ceram. Soc. 36 1399 [30] Brown B I D and Shannon R D 1973 Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 29 266 [31] Takahashi S, Kan A and Ogawa H 2017 J. Eur. Ceram. Soc. 37 1001 [32] Kan A, Ogawa H and Ohsato H 2007 Jpn. J. Appl. Phys. 46 7108 [33] BROWN B I D and Wu K K 1976 Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 1957 [34] Li J, Fang L, Luo H, Tang Y and Li C C 2016 J. Eur. Ceram. Soc. 36 2143 [35] Brown B I D and Altermatt D 1985 Acta Crystallogr. Sect. B: Struct. Sci. 41 244 [36] Chen M D, Zhou Z H and Hu S Z 2002 Chin. Sci. Bull. 47 978 [37] Brese N E and O'Keeffe M 1991 Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 47 192 [38] Song X Q, Du K, Li J, Lan X K, Lu W Z, Wang X H and Lei W 2019 Ceram. Int. 45 279 [39] Liou Y C and Yang S L 2007 Mater. Sci. Eng. B 142 116 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|