Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117503    DOI: 10.1088/1674-1056/27/11/117503
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Mn-based permanent magnets

Jinbo Yang(杨金波)1,2,3, Wenyun Yang(杨文云)1,2,3, Zhuyin Shao(邵珠印)1,2,3, Dong Liang(梁栋)1,2,3, Hui Zhao(赵辉)1,2,3, Yuanhua Xia(夏元华)4, Yunbo Yang(杨云波)1
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
3 Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, China;
4 Institutes of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
Abstract  

Mn-based intermetallic compounds have attracted much attention due to their fascinating structural and physical properties, especially their interesting hard magnetic properties. In this paper, we have summarized the magnetic and structural properties of Mn-based intermetallic compounds (MnX, where X=Al, Bi, and Ga). Various methods for synthesizing single phases of MnAl, MnBi, and MnxGa were developed in our lab. A very high saturation magnetization of 125 emu/g, coercivity of 5 kOe, and maximum energy product (BH)max of 3.1 MG·Oe were achieved at room temperature for the pure τ-Mn-Al magnetic phase without carbon doping and the extrusion process. Low temperature phase (LTP) MnBi with a purity above 95 wt.% can be synthesized. An abnormal temperature coefficient of the coercivity was observed for the LTP MnBi magnet. Its coercivity increased with temperature from 100 K to 540 K, reached a maximum of 2.5 T at about 540 K, and then decreased slowly to 1.8 T at 610 K. The positive temperature coefficient of the coercivity is related to the evolution of the structure and magnetocrystalline anisotropy field of the LTP MnBi phase with temperature. The LTP MnBi bonded magnets show maximum energy products (BH)max of 8.9 MG·Oe (70 kJ/m3) and 5.0 MG·Oe (40 kJ/m3) at room temperature and 400 K, respectively. Ferrimagnetic MnxGa phases with L10 structures (x < 2.0) and D022 structures (x > 2.0) were obtained. All of the above structures can be described by a D022 supercell model in which 2a-Ga and 2b-Mn are simultaneously substituted. The tetragonal D022 phases of the MnxGa show high coercivities ranging from 7.2 kOe for low Mn content x=1.8 to 18.2 kOe for high Mn content x=3 at room temperature. The Mn1.2Ga sample exhibits a room temperature magnetization value of 80 emu/g. The hard magnetic properties of coercivity iHc=3.5 kOe, remanence Mr=43.6 emu/g, and (BH)max=2.5 MG·Oe were obtained at room temperature. Based on the above studies, we believe that Mn-based magnetic materials could be promising candidates for rare earth free permanent magnets exhibiting a high Curie temperature, high magnetocrystalline anisotropy, and very high coercivity.

Keywords:  permanent magnetic materials      magnetic properties      manganese alloys      magnetic structure      coercivity      magnetization      neutron diffraction  
Received:  23 September 2018      Revised:  25 October 2018      Accepted manuscript online: 
PACS:  75.50.Ww (Permanent magnets)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.75.-c (Magnetic properties of nanostructures)  
  61.05.F- (Neutron diffraction and scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51731001, 11805006, 51371009, 11504348, and 11675006) and the National Key Research and Development Program of China (Grant Nos. 2016YFB0700901, 2017YFA0401502, and 2017YFA0206303).

Corresponding Authors:  Jinbo Yang     E-mail:  jbyang@pku.edu.cn

Cite this article: 

Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波) Mn-based permanent magnets 2018 Chin. Phys. B 27 117503

[1] Strnat K 1970 IEEE Trans. Magn. Mag. 6 182
[2] Croat J J, Herbst J F, Lee R W and Pinkerton F E 1984 Appl. Phys. Lett. 44 148
[3] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1998 J. Appl. Phys. 55 2083
[4] Yang Y C and Zhang X D 1990 J. Rare Earth 4 376(in Chinese)
[5] Coey J and Sun H 1990 J. Magn. Magn. Mater. 87 L251
[6] Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[7] Coey J M 2012 Scri. Mater. 67 524
[8] Coey J M 2014 J. Phys.:Condens. Matter 26 064211
[9] Kōno H 1958 J. Phys. Soc. Jpn. 13 1444
[10] Koch A J J, Hokkeling P, V dS M G and DeVos K J 1960 J. Appl. Phys. 31 S75
[11] Moze O, Pareti L and Ermakov A E 1988 J. Appl. Phys. 63 4616
[12] Braun P B and Goedkoop J A 1963 Acta Crystallogr. 16 737
[13] Konstantinović J, Popov D, Nešković N B and Popovici M 1978 Solid State Commun. 25 337
[14] Yang Y, Ho W, Lin C, Yang J, Zhou H, Zhu J, Zeng X, Zhang B and Jin L 1984 J. Appl. Phys. 55 2053
[15] Pareti L, Bolzoni F, Leccabue F and Ermakov A E 1986 J. Appl. Phys. 59 3824
[16] Park J H, Hong Y K, Bae S, Lee J J, Jalli J, Abo G S, Neveu N, Kim S G, Choi C J and Lee J G 2010 J. Appl. Phys. 107 09A731
[17] Hoydick D P, Palmiere E J and Soffa W A 1997 J. Appl. Phys. 81 5624
[18] Zhao H, Yang W Y, Shao Z Y, Tian G, Zhou D, Chen X P, Xia Y H, Xie L, Liu S Q, Du H L,Han J Z, Wang C S, Yang Y C and Yang J B 2016 J. Alloys Compd. 680 14
[19] Shao Z, Zhao H, Zeng J, Zhang Y, Yang W, Lai Y, Guo S, Du H, Wang C, Yang Y and Yang J 2017 AIP. Adv. 7 056213
[20] Liu Z W, Chen C, Zheng Z G, Tan B H and Ramanujan R V 2012 J. Mater. Sci. 47 2333
[21] Singh N, Mudgil V, An, K, Srivastava A K, Kotnala R K and Dhar A 2015 J. Alloys Compd. 633 401
[22] Jimenez-Villacorta F, Marion J L, Oldham J T, Daniil M, Willard M A, Lewis L H 2014 Metals 4 8
[23] Chaturvedi A, Yaqub R and Baker I 2014 J. Phys.:Condens. Matter 26 064201
[24] Wei J Z, Song Z G, Yang Y B, Liu S Q, Du H L, Han J Z, Zhou D, Wang C S, Yang Y C, Franz A, Többens D and Yang J B 2014 AIP. Adv. 4 182
[25] Lu W, Niu J, Wang T, Xia K, Xiang Z, Song Y, Zhang H, Yoshimura S and Saito H 2016 J. Alloys Compd. 675 163
[26] Fang H, Kontos S, Ångström J, Cedervall J, Svedlindh P, Gunnarsson K and Sahlberga M 2016 J. Solid State Chem. 237 300
[27] Mccurrie R, Rickman J, Dunk P and Hawkridge D 1978 IEEE Trans. Magn. 14 682
[28] Breton J M L, Bran J, Folcke E, Lucis M, Lardé R, Jean M, Shieldb J E 2013 J. Alloys Compd. 581 86
[29] Fazakas E, Varga L K and Mazaleyrat F 2007 J. Alloys Compd. 434 611
[30] Zeng Q, Baker I, Cui J B and Yan Z C 2007 J. Magn. Magn. Mater. 308 214
[31] Müllner P, Bürgler B E, Heinrich H, Sologubenko A S and Kostorz G 2002 Philos. Mag. Lett. 82 71
[32] Zijlstra H and Haanstra H B 1966 J. Appl. Phys. 37 2853
[33] Heusler F 1904 Angew. Chem. 17 260
[34] Adams E 1952 J. Appl. Phys. 23 1207
[35] Chen T and Stutius W 1974 IEEE Trans. Magn. 10 581
[36] Guo X, Chen X, Altounian Z and Ström-Olsen J O 1992 Phy. Rev. B 46 14578
[37] Yang J B, Kamaraju K, Yelon W B, James W J, Cai Q and Bollero A 2001 Appl. Phys. Lett. 79 1846
[38] Yang J B, Yang Y B, Chen X G, Ma X B, Han J Z, Yang Y C, Guo S, Yan A R, Huang Q Z, Wu M M and Chen D F 2011 Appl. Phys. Lett. 99 082505
[39] Ly V, Wu X, Smillie L, Shoji T, Kato A, Manabe A, Suzuki K 2014 J. Alloys Compd. 615 S285
[40] Poudyal N and Liu J P 2013 J. Phys. D:Appl. Phys. 46 43001
[41] Cui J, Choi J P, Li G, Polikarpov E, Darsell J, Overman N, Olszta M, Schreiber D, Bowden M and Droubay T 2014 J. Phys.:Condens. Matter 26 064212
[42] Yang J B, Yelon W B, James W J, Cai Q, Kornecki M, Roy S, Ali N and l'Heritier Ph 2002 J. Phys.:Condens. Matter 14 6509
[43] Yoshida H, Shina T, Takahashi T and Fujimori H 1999 Mater. Trans. JIM 40 455
[44] Liu Y, Zhang J, Cao S, Zhang X, Jia G, Ren Z, Li X, Jing C and Deng K 2005 Phys. Rev. B 72 214410
[45] Ko K Y, Choi S J, Yoon S K and Kwon Y S 2007 J. Magn. Magn. Mater. 310 e887
[46] Zhang D T, Geng W T, Yue M, Liu W Q, Zhang J X, Sundararajan J A, Qiang Y 2012 J. Magn. Magn. Mater. 324 1887
[47] Kirkeminde A, Shen J, Gong M, Cui J and Ren S 2015 Chem. Mater. 27 4677
[48] Vuong Nguyen V, Poudyal N, Liu X B, Liu J P, Sun K, Kramer M J, Cui J 2014 Mater. Res. Express 1 036108
[49] Rama Rao N V, Gabay A M, Li W F and Hadjipanayis G C 2013 J. Phys. D:Appl. Phys. 46 265001
[50] Yang Y B, Wei J Z, Peng X L, Xia Y H, Chen X G, Wu R, Du H L, Han J Z, Wang C S, Yang Y C, Yang J B 2014 J. Appl. Phys. 115 17A721
[51] Zhang D T, Geng W T, Yue M, Liu W Q, Lu Q M, Zhang J X, Guo Z H, Li W, Sundararajan J A, Qiang Y 2014 J. Appl. Phys. 115 17A746
[52] Ma Y L, Liu X B, Gandha K and Vuong N V 2014 J. Appl. Phys. 115 17A755
[53] Yang J B, Yelon W B, James W J, Cai Q, Roy S and Ali N 2002 J. Appl. Phys. 91 7866
[54] Yang Y B, Chen X G, Wu R, Wei J Z, Ma X B, Han J Z, Du H L, Wang C S, Yang Y C, Zhang Y, Yang J B 2012 J. Appl. Phys. 111 07E312
[55] Yang Y B, Chen X G, Guo S, Yan A R, Huang Q Z, Wu M M, Chen D F, Yang Y C, Yang J B 2013 J. Magn. Magn. Mater. 330 106
[56] Kronmüller H, Yang J B and Goll D 2014 J. Phys.:Condens. Matter 26 064210
[57] Zhou D, Zhang Y F, Ma X B, Liu S Q, Han J Z, Zhu M G, Wang C S and Yang J B 2015 Chin. Phys. Lett. 32 127502
[58] Stoner E C and Wohlfarth E P 1948 Phil. Trans. R. Soc. A 240 599
[59] Kronmüller H, Durst K D and Martinek G 1987 J. Mag. Mag. Mater. 69 149
[60] Albert P A and Carr W J J 1961 J. Appl. Phys. 32 S201
[61] Kondorsky E 1940 J. Phys. 11 161
[62] Schubert K, Meissner H G, and Rossteutscher W 1964 Einige Strukturdaten Metallischer Phasen (Berlin:Naturwissenschaften) 11 287
[63] Meissner H G, Schubert K and Anantharaman T R 1965 Proc. Indian Acad. Sci. Sect. A 61 340
[64] Huh Y, Kharel P, Shah V R, Li X Z, Skomski R and Sellmyer D J 2013 J. Appl. Phys. 114 013906
[65] Rode K, Baadji N, Betto D, Lau Y C, Kurt H, Venkatesan M, Stamenov P, Sanvito S, Coey J M D, Fonda E, Otero E, Choueikani F, Ohresser P, Porcher F and André G 2013 Phys. Rev. B Condens. Matter 87 184429
[66] Sakuma A 1998 J. Magn. Magn. Mater. 187 105
[67] Zhu L and Zhao J 2013 Appl. Phys. A 111 379
[68] Mix T, Müller K H, Schultz L and Woodcock T G 2015 J. Magn. Magn. Mater. 391 89
[69] Lu Q M, Yue M, Zhang H G, Wang M L, Yu F, Huang Q Z, Ryan D H and Altounian Z 2015 Sci. Rep. 5 17086
[70] Krén E and Kádár G 1970 Solid State Commun. 8 1653
[71] Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A ando Y 2012 Phys. Rev. B 85 014416
[72] Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M and Bernardi F and.Morais J 2008 Phys. Rev. B 77 054406
[73] Rode K, Baadji N, Betto D, Lau Y C, Kurt H, Venkatesan M, Stamenov P, Sanvito S, Coey J M D, Fonda E, Otero E, Choueikani F and Ohresser P 2013 Phys. Rev. B 87 184429
[74] Zhao H, Yang W, Shao Z, Tian G, Zhou D, Du, H, Liu S, Han J, Wang C, Xu J, Yu D, Yang Y, Yang J 2017 Scri. Mater. 129 6
[75] Wei J Z, Wu R, Yang Y B, Chen X G, Xia Y H, Yang Y C, Wang C S and Yang J B 2014 J. Appl. Phys. 115 17A736
[76] Lu X S, Liang J K and Zhou M G 1980 Acta Phys. Sin. 29 469(in Chinese)
[77] Wachtel E and Nier K J 1965 Z. Metallk 56 779
[78] Okamoto H 2010 Desk Handbook:Phase Diagrams For Binary Alloys (2nd Edn.) (ASM International Materials Park, Ohio 44073-0002) p. 400
[79] Kazuhiro Minakuchi, Umetsu Y, Kiyohito Ishida, Ryosuke Kainuma 2012 J. Alloys Compd. 537 332
[80] Kurt H, Rode K, Venkatesan M, Stamenov P and Coey J M D 2011 Phys. Rev. B 83 020405(R)
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[4] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[5] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[8] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[9] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[10] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[11] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[12] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[13] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[14] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[15] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
No Suggested Reading articles found!