Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 068102    DOI: 10.1088/1674-1056/ac9a38
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature

Shuai Xu(徐帅)1, Tao Wang(王韬)2,†, Xingang Wang(王新刚)3, Lu Wu(吴璐)4, Zhongqiang Fang(方忠强)4, Fangfang Ge(葛芳芳)5, Xuan Meng(蒙萱)6, Qing Liao(廖庆)7, Jinchun Wei(魏金春)1, and Bingsheng Li(李炳生)7,‡
1 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
2 Institute of Fluid Physics, China Academy of Engineering Physic, Mianyang 621900, China;
3 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050, China;
4 The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610213, China;
5 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
6 Lanzhou University, Lanzhou 730000, China;
7 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Ti$_{0.2}$Zr$_{0.2}$Hf$_{0.2}$Nb$_{0.2}$Ta$_{0.2}$C-$M_{x}$C composite ceramic was prepared by hot press sintering, with the Ti$_{0.2}$Zr$_{0.2}$Hf$_{0.2}$Nb$_{0.2}$Ta$_{0.2}$C high-entropy carbide as the main phase. Secondary phase $M_{x}$C ($M={\rm Ti}$, Zr, Hf, Nb, Ta) was found to be distributed relatively uniform in the composite ceramic. The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K. Morphology of the surface and cross sections of all oxidation samples were observed. The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase $M_{x}$C were compared and analyzed. The secondary phases (such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K, which reflects the superior oxidation performance of the high-entropy carbide. The nano high-entropy oxides with Ti, Zr, Hf, Nb, Ta, and O elements were discovered by oxidation of the composite ceramic. This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic.
Keywords:  ceramic composites      oxidation      oxide surface      microstructure  
Received:  31 May 2022      Revised:  29 September 2022      Accepted manuscript online:  14 October 2022
PACS:  81.05.Mh (Cermets, ceramic and refractory composites)  
  81.65.Mq (Oxidation)  
  68.47.Gh (Oxide surfaces)  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
Fund: Project supported by the Doctoral Research Fund of Southwest University of Science and Technology (Grant No. 20zx7104), the Sichuan Science and Technology Program (Grant No. 2020ZYD055), and the National Natural Science Foundation of China (Grant Nos. 11905206 and 12075194).
Corresponding Authors:  Tao Wang, Bingsheng Li     E-mail:  wangtaoxtc@gmail.com;libingshengmvp@163.com

Cite this article: 

Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生) Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature 2023 Chin. Phys. B 32 068102

[1] Zinkle S J and Was G S 2013 Acta Mater. 61 735
[2] Hosemann P, Frazer D, Fratoni M, Bolind M and Ashby M F 2018 Scr. Mater. 143 181
[3] Zhang R Z and Reece M J 2019 J. Mater. Chem. A 7 22148
[4] Oses C, Toher C and Curtarolo S 2020 Nat. Rev. Mater. 5 295
[5] Wang K, Chen L, Xu C, Zhang W, Liu Z, Wang Y, Ouyang J, Zhang X, Fu Y and Zhou Y 2020 J. Mater. Sci. Technol. 39 99
[6] Han X, Girman V, Sedlak R, Dusza J, Gastle E G, Wang Y, Reece M and Zhang C 2020 J. Eur. Ceram. Soc. 40 2709
[7] Dusza J, Csanádi T, Medved D, Sedlák R, Vojtko M, Ivor M, Ünsal H, Tatarko P, Tatarková M and Šajgalík P 2021 J. Eur. Ceram. Soc. 41 5417
[8] Wang Z, Li Z T, Zhao S J and Wu Z G 2021 Tungsten 3 131
[9] Wang F, Yan X, Wang T, Wu Y, Shao L, Nastasi M, Lu Y and Cui B 2020 Acta Mater. 195 739
[10] Ye B, Wen T, Liu D and Chu Y 2019 Corros. Sci. 153 327
[11] Wang H, Han X, Liu W and Wang Y 2021 Ceram. Int. 47 10848
[12] Wang Y, Zhang R Z, Zhang B, Skurikhina O, Balaz P, Araullo-Peters V and Reece M J 2020 Corros. Sci. 176 109019
[13] Wang H, Cao Y, Liu W and Wang Y 2020 Ceram. Int. 46 11160
[14] Wang H, Wang S, Cao Y, Liu W and Wang Y 2021 J. Mater. Sci. Technol. 60 147
[15] Wei X F, Liu J X, Li F, Qin Y, Liang Y C and Zhang G J 2019 J. Eur. Ceram. Soc. 39 2989
[16] Wei X F, Liu J X, Li F, Qin Y, Liang Y C and Zhang G J 2020 J. Eur. Ceram. Soc. 40 935
[17] Guan S, Liang H, Wang Q, Tan L and Peng F 2021 Inorg. Chem. 60 3807
[18] Wang Y and Reece M J 2021 Scr. Mater. 193 86
[19] Tan Y, Chen C, Li S, Han X, Xue J, Liu T, Zhou X and Zhang H 2020 J. Alloys Compd. 816 152523
[20] Moghaddam A O, Cabot A and Trofimov E A 2021 Int. J. Refract. Met. Hard Mater. 97 105504
[21] Backman L, Gild J, Luo J and Opila E J 2020 Acta Mater. 197 20
[22] Backman L, Gild J, Luo J and Opila E J 2020 Acta Mater. 197 81
[23] Zhou J, Zhang J, Zhang F, Niu B, Lei L and Wang W 2018 Ceram. Int. 44 22014
[24] Zhao J, Wang C and Wang Y 2018 Powder Science and Engineering (Beijing: Chemical industry press) p. 223 (in Chinese)
[1] Narrowed Si0.7Ge0.3 channel FinFET with subthreshold swing of 64 mV/Dec using cyclic self-limited oxidation and removal process
Hao-Yan Liu(刘昊炎), Yong-Liang Li(李永亮), and Wen-Wu Wang(王文武). Chin. Phys. B, 2023, 32(7): 077302.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[9] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[12] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[13] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[14] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[15] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
No Suggested Reading articles found!