Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054701    DOI: 10.1088/1674-1056/ac9cbd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Improved contact angle measurement in multiphase lattice Boltzmann

Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海)
College of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  Contact angle is an essential parameter to characterize substrate wettability. The measurement of contact angle in experiment and simulation is a complex and time-consuming task. In this paper, an improved method of measuring contact angle in multiphase lattice Boltzmann simulations is proposed, which can accurately obtain the real-time contact angle at a low temperature and larger density ratio. The three-phase contact point is determined by an extrapolation, and its position is not affected by the local deformation of flow field in the three-phase contact region. A series of simulations confirms that the present method has high accuracy and gird-independence. The contact angle keeps an excellent linear relationship with the chemical potential of the surface, so that it is very convenient to specify the wettability of a surface. The real-time contact angle measurement enables us to obtain the dynamic contact angle hysteresis on chemically heterogeneous surface, while the mechanical analyses can be effectively implemented at the moving contact line.
Keywords:  contact angle measurement      contact angle hysteresis      mechanical analysis      lattice Boltzmann method  
Received:  04 August 2022      Revised:  10 October 2022      Accepted manuscript online:  21 October 2022
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  05.50.+q (Lattice theory and statistics)  
  47.61.Jd (Multiphase flows)  
  47.55.np (Contact lines)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12272100, 81860635, and 12062005).
Corresponding Authors:  Bing He, Bing-Hai Wen     E-mail:  hebing@gxnu.edu.cn;oceanwen@gxnu.edu.cn

Cite this article: 

Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海) Improved contact angle measurement in multiphase lattice Boltzmann 2023 Chin. Phys. B 32 054701

[1] Kwok D Y and Neumann A W 1999 Adv. Colloid Interface Sci. 81 167
[2] Sui Y, Ding H and Spelt P D 2014 Ann. Rev. Fluid Mech. 46 97
[3] Jopp J, Grüll H and Yerushalmi-Rozen R 2004 Langmuir 20 10015
[4] Rayleigh L 1879 Proc. R. Soc. London 29 71
[5] Bruel C, Queffeulou S, Darlow T, Virgilio N, Tavares J R and Patience G S 2019 The Canadian Journal of Chemical Engineering 97 832
[6] Bigelow W, Pickett D and Zisman W 1946 Journal of Colloid Science 1 513
[7] Extrand C and Kumagai Y 1996 J. Colloid Interface Sci. 184 191
[8] Tretinnikov O N and Ikada Y 1994 Langmuir 10 1606
[9] Alghunaim A, Kirdponpattara S and Newby B Z 2016 Powder Technol. 287 201
[10] Washburn E W 1921 Phys. Rev. 17 273
[11] Markodimitrakis I E, Sema D G, Chamakos N T, Papadopoulos P and Papathanasiou A G 2021 Soft Matter 17 4335
[12] Zhou Y and Zhu P 2022 The Innovation 3 100222
[13] Lin X, Yang F, You L, Wang H and Zhao F 2021 The Innovation 2 100104
[14] Bachmann J, Ellies A and Hartge K H 2000 Journal of Hydrology 231-232 66
[15] Brugnara M, Degasperi E, Volpe C D, et al. 2004 Colloids and Surfaces A: Physicochemical and Engineering Aspects 241 299
[16] Mitchell B R, Klewicki J C, Korkolis Y P and Kinsey B L 2019 J. Fluid Mech. 867 300
[17] Rankl M, Laib S and Seeger S 2003 Colloids and Surfaces B: Biointerfaces 30 177
[18] Salaün F, Devaux E, Bourbigot S and Rumeau P 2009 Text. Res. J. 79 1202
[19] Qin F, Zhao J, Kang Q, Derome D and Carmeliet J 2021 Transport Porous Media 140 395
[20] Zhang Q, Sun D, Zhang Y and Zhu M 2014 Langmuir 30 12559
[21] Benzi R, Biferale L, Sbragaglia M, Succi S and Toschi F 2006 Phys. Rev. E 74 021509
[22] Ding H and Spelt P D M 2007 Phys. Rev. E 75 046708
[23] Lee H G and Kim J 2011 Comput. Fluids 44 178
[24] Huang H, Thorne D T, Jr., Schaap M G and Sukop M C 2007 Phys. Rev. E 76 066701
[25] Chen L, Kang Q, Mu Y, He Y and Tao W 2014 Int. J. Heat Mass Transfer 76 210
[26] Wen B, Huang B, Qin Z, Wang C and Zhang C 2018 Comput. Math. Appl. 76 1686
[27] Sun D K, Jiang D, Xiang N, Chen K and Ni Z 2013 Chin. Phys. Lett. 30 074702
[28] Zhang S, Tan Y D and Zhang S L 2014 Chin. Phys. B 23 114202
[29] Lallemand P and Luo L 2000 Phys. Rev. E 61 6546
[30] Lin C, Luo K H, Xu A, Gan Y and Lai H 2021 Phys. Rev. E 103 013305
[31] Luo L, Liao W, Chen X, Peng Y and Zhang W 2011 Phys. Rev. E 83 056710
[32] Wen B, Zhou X, He B, Zhang C and Fang H 2017 Phys. Rev. E 95 063305
[33] Wen B, Zhao L, Qiu W, Ye Y and Shan X 2020 Phys. Rev. E 102 013303
[34] Kupershtokh A, Medvedev D and Karpov D 2009 Comput. Math. Appl. 58 965
[35] Qin Z R, Chen Y Y, Ling F R, Meng L J and Zhang C Y 2020 Chin. Phys. B 29 34701
[36] Huang H, Krafczyk M and Lu X 2011 Phys. Rev. E 84 046710
[37] Lebowitz J L and Penrose O 1966 Journal of Mathematical Physics 7 98
[38] Wu F, Yang X H, Packard A and Becker G 1996 International Journal of Robust and Nonlinear Control 6 983
[39] Eral H, Mannetje D and Oh J M 2013 Colloid Polym. Sci. 291 247
[40] Gao L and McCarthy T J 2006 Langmuir 22 6234
[41] Liang H, Liu H, Chai Z and Shi B 2019 Phys. Rev. E 99 063306
[42] Li Q, Zhou P and Yan H J 2016 Langmuir 32 9389
[43] He B, Qin C, Zhou S and Wen B 2020 Phys. Rev. Fluids 5 114003
[44] Anderson D M, McFadden G B and Wheeler A A 1998 Ann. Rev. Fluid Mech. 30 139
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[8] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[9] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[10] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[11] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[12] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[13] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[14] Contact angle hysteresis in electrowetting on dielectric
Zhao Rui (赵瑞), Liu Qi-Chao (刘启超), Wang Ping (王评), Liang Zhong-Cheng (梁忠诚). Chin. Phys. B, 2015, 24(8): 086801.
[15] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
No Suggested Reading articles found!