Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044201    DOI: 10.1088/1674-1056/acb1fe

Propagation and focusing characteristics of the Bessel-Gaussian beam with the spiral phase term of new power-exponent-phase

Aotian Wang(王傲天)1,2, Lianghong Yu(於亮红)1,†, Jinfeng Li(李进峰)1, and Xiaoyan Liang(梁晓燕)1,‡
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A new type of beam called the NPEP-BG (a Bessel-Gaussian (BG) beam with a spiral phase term of a new power-exponent-phase (NPEP)) is theoretically studied in this paper. The results show that the number of singularities of the phase and side lobes of the intensity of this beam were equal to the topological charges (TCs) and the beam has the characteristics of self-healing during propagation. The NPEP-BG beam combined the partial characteristics of the new power-exponent-phase vortex (NPEPV) and the Bessel-Gaussian beam. At the focus of the beam, the characteristic like a perfect vortex beam was present, in which the focal radius is stable and independent of the topological charge. There are multi-focal spots around a ring in the focal plane, meaning that the NPEP-BG beam has a potential for application in multi-particle manipulation.
Keywords:  vortex      new-power-exponential-phase      Bessel-Gaussian beam      focus  
Received:  14 November 2022      Revised:  30 December 2022      Accepted manuscript online:  11 January 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Program of Shanghai Academic/Technology Research Leader (Grant No. 20SR014501), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB1603), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2019247).
Corresponding Authors:  Lianghong Yu, Xiaoyan Liang     E-mail:;

Cite this article: 

Aotian Wang(王傲天), Lianghong Yu(於亮红), Jinfeng Li(李进峰), and Xiaoyan Liang(梁晓燕) Propagation and focusing characteristics of the Bessel-Gaussian beam with the spiral phase term of new power-exponent-phase 2023 Chin. Phys. B 32 044201

[1] Allen L, Beijersbergen M W and Spreeuw R J C 1992 Phys. Rev. A 45 8185
[2] Wang J, Yang J Y and Fazal I M 2012 Nat. Photon. 6 488
[3] Brunet C, Vaity P and Messaddeq Y 2014 Opt. Express 22 26117
[4] Zhao L, Hao Y and Chen L 2022 Chin. Opt. Lett. 20 020601
[6] Stefan H and Jan W 1994 Opt. Lett. 19 780
[7] Shen Y, Wang X, Xie Z, et al. 2019 Light: Science & Applications 8 90
[8] Wang W P, Jiang C and Dong H 2020 Phys. Rev. Lett. 125
[9] Leach J, Yao E and Padgett M J 2004 New J. Phys. 6 71
[5] Lu X, Chen X and Zhang L 2003 Chin. Phys. Lett. 20 2155
[10] Ostrovsky A S, Rickenstorff-Parrao C and Arrizon V 2013 Opt. Lett. 38 534
[11] Vaity P and Rusch L 2015 Opt. Lett. 40 597
[12] Chen M, Mazilu M and Arita Y 2013 Opt. Lett. 38 4919
[13] Lao G, Zhang Z and Zhao D 2016 Opt. Express 24 18082
[14] Ma H, Li X, Zhang H, et al. 2019 Opt. Lett. 44 1379
[15] Shen D, Wang K and Zhao D 2019 Opt. Express 27 24642
[16] Fan C, Liu Y and Wang X 2018 J. Opt. Soc. Am. A 35 903
[17] Chen X, Wang X and Wang L 2020 Photon. Res. 8 929
[18] Ren Z, Ying C, Fan C and Wu Q 2012 Chin. Phys. Lett. 29 124209
[19] Durnin J, Jr M J and Eberly J H 1987 Phys. Rev. Lett. 58 1499
[20] Indebetouw G 1989 J. Opt. Soc. Am. A 6 150
[21] Davis J A, Carcole E and Cottrell D M 1996 Appl. Opt. 35 593
[22] Wang J 2016 Photon. Res. 4 B14
[23] Khonina S N, Kazanskiy N L and Karpeev S V 2020 Micromachines 11 997
[24] Bai Y, Lv H and Fu X 2022 Chin. Opt. Lett. 20 012601
[1] Broadband and Wide-angle Plane Focal Surface Luneburg Lens
Jue Li (李珏), Yangyang Zhou (周杨阳), and Huanyang Chen (陈焕阳). Chin. Phys. B, 2023, 32(6): 064210.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[4] Plasma density transition-based electron injection in laser wake field acceleration driven by a flying focus laser
Pan-Fei Geng(耿盼飞), Min Chen(陈民), Xiang-Yan An(安相炎), Wei-Yuan Liu(刘维媛), Xin-Zhe Zhu(祝昕哲), Jian-Long Li(李建龙), Bo-Yuan Li(李博原), and Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2023, 32(4): 044101.
[5] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[6] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[7] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[8] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[9] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[10] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[11] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[12] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[13] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[14] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[15] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
No Suggested Reading articles found!