Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 105201    DOI: 10.1088/1674-1056/acb0bf
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Transmission effects of high energy nanosecond lasers in laser-induced air plasma under different pressures

Wei-Min Hu(胡蔚敏)1,2,3, Kai-Xin Yin(尹凯欣)1,2,†, Xiao-Jun Wang(王小军)1,2, Jing Yang(杨晶)1,2, Ke Liu(刘可)1,2, Qin-Jun Peng(彭钦军)1,2, and Zu-Yan Xu(许祖彦)1,2
1 Key Laboratory of Solid State Lasers, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 Institute of Optical Physics and Engineering Technology, Qilu Zhongke, Jinan 250000, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  When a high energy nanosecond (ns) laser induces breakdown in the air, the plasma density generated in the rarefied atmosphere is much smaller than that at normal pressure. It is associated with a relatively lower absorption coefficient and reduces energy loss of the laser beam at low pressure. In this paper, the general transmission characterizations of a Joule level 10 ns 1064 nm focused laser beam are investigated both theoretically and experimentally under different pressures. The evolution of the electron density ($n_{\rm e}$), the changes in electron temperature ($T_{\rm e}$) and the variation of laser intensity ($I$) are employed for numerical analyses in the simulation model. For experiments, four optical image transfer systems with focal length ($f$) of 200 mm are placed in a chamber and employed to focus the laser beam and produce plasmas at the focus. The results suggest that the transmittance increases obviously with the decreasing pressure and the plasma channels on the transmission path can be observed by the self-illumination. The simulation results agree well with the experimental data. The numerical model presents that the maximum $n_{\rm e}$ at the focus can reach 10$^{19}$ cm$^{-3}$, which is far below the critical density ($n_{\rm c}$). As a result, the laser beam is not completely shielded by the plasmas.
Keywords:  laser-induced plasma      high energy      nanosecond laser pulse      rarefied atmosphere  
Received:  23 November 2022      Revised:  04 January 2023      Accepted manuscript online:  06 January 2023
PACS:  52.38.Dx (Laser light absorption in plasmas (collisional, parametric, etc.))  
  42.25.Bs (Wave propagation, transmission and absorption)  
  52.38.-r (Laser-plasma interactions)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
Fund: Project supported by the Science and Technology Innovation Foundation of the Chinese Academy of Sciences (Grant No. CXJJ-20S020).
Corresponding Authors:  Kai-Xin Yin     E-mail:  yinkx@mail.ipc.ac.cn

Cite this article: 

Wei-Min Hu(胡蔚敏), Kai-Xin Yin(尹凯欣), Xiao-Jun Wang(王小军), Jing Yang(杨晶), Ke Liu(刘可), Qin-Jun Peng(彭钦军), and Zu-Yan Xu(许祖彦) Transmission effects of high energy nanosecond lasers in laser-induced air plasma under different pressures 2023 Chin. Phys. B 32 105201

[1] Shu X F, Yu C X, Li W and Liu S B 2015 Phys. Rev. A 92 063844
[2] Chen S Y, Teng H, Lu X, Shen Z W, Qin S, Wei W S, Chen R Y, Chen L M, Li Y T and Wei Z Y 2018 Chin. Phys. B 27 085203
[3] Feng Z F, Li R, Li W, Liu Y, Shu X F, Yu C X, Li J H and Liu X 2022 Opt. Commun. 502 127404
[4] Soubacq S, Pignolet P, Schall E and Batina J 2004 J. Phys. D: Appl. Phys. 37 2686
[5] Thiyagarajan M and Thompson S 2012 J. Appl. Phys. 111 073302
[6] Zhang H T, Sun H, Wu Y and Zhou Q H 2021 Spectrochimica Acta B 177 106103
[7] Böker D and Brüggemann D 2011 Spectrochimica Acta B 66 28
[8] Mahdieh M H and Jafarabadi M A 2015 Phys. Plasmas 22 123117
[9] An B, Wang Z G, Yang L C, Wu G, Zhu J J and Li X P 2017 J. Appl. Phys. 122 193301
[10] Nagli L, Gaft M and Raichlin Y 2019 Opt. Commun. 443 63
[11] Wang X S, Song X W, Gao X and Lin J Q 2020 Opt. Commun. 456 124603
[12] Zhang Y X, Zhu Z, Joseph R and Shihan I J 2021 Defence Technology 17 1269
[13] Produit T, Walch P, Herkommer C, Mostajabi A, Moret M, Andral U, Sunjerga A, Azadifar M, André Y B, Mahieu B, Haas W, Esmiller B, Fournier G, Krötz P, Metzger T, Michel K, Mysyrowicz A, Rubinstein M, Rachidi F, Kasparian J, Wolf J P and Houard A 2021 Eur. Phys. J. Appl. Phys. 93 10504
[14] Wang T, Zhao X, Song Y S, Wang J Y, Yu X N and Zhang Y Q 2017 IEEE Access 9 43339
[15] Song W H, Ghassemlooy Z, Lai J C, Yan W, Wang C Y and Li Z H 2017 J. Opt. 19 045605
[16] Sircar A, Dwivedi R K and Thareja R K 1996 Appl. Phys. B 63 623
[17] Hermann J and Floch T L 2004 J. Appl. Phys. 96 3084
[18] Eliezer S 2002 The Interaction of High-Power Lasers with Plasmas (London: The Institute of Physics Publishing) pp. 23-86
[19] Gamal Y E E D, Shafik M S E D and Daoud J M 1999 J. Phys. D: Appl. Phys. 32 423
[20] Zhao X M, Diels J C, Wang C Y and Elizondo J M 1995 IEEE J. of Quantum Electronics 31 599
[21] Zhang Z M and Chen D H 2002 J. Heat Trans. 124 391
[22] Boyd R W 2008 Nonlinear Optics, 3rd edn. (New York: Academic Press) p. 213
[23] Shimoji Y, Fay A T, Chang R S F and Djeu N 1989 J. Opt. Soc. Am. B 6 1994
[24] Börzsönyi Á, Heiner Z, Kovács A, Kalashnikov M P and Osvay K 2009 Nonlinear Photonics.
[25] Börzsönyi Á, Heiner Z, Kovács A, Kalashnikov M P and Osvay K 2010 Opt. Express 18 25847
[26] Bindhu C V, Harilal S S, Tillack M S, Najmabadi F and Gaeris A C 2003 J. Appl. Phys. 94 7402
[27] Shimada Y, Uchida S, Yasuda H, Motokoshi S, Yamanaka C, Kawasaki Z, Yamanaka T, Ishikubo Y and Adachi M 1998 Proc. SPIE 3423 258
[28] Zhong J Y, Li Y T, Lu X, Zhang Y, Jens B, Liu F, Hao Z Q, Zhang Z, Yu Q Z, Chen M, Yuan X H, Liang W X, Zhao G and Zhang J 2007 Acta Phys. Sin. 56 7114 (in Chinese)
[1] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适), Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[2] Induced dipole dominant giant electrorheological fluid
Rong Shen(沈容), Kunquan Lu(陆坤权), Zhaohui Qiu(邱昭晖), and Xiaomin Xiong(熊小敏). Chin. Phys. B, 2023, 32(7): 078301.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[5] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[6] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[7] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[8] Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis
Tian-Long Li(李天龙), Zheng Wei(魏征), and Wei-Shi Wan(万唯实). Chin. Phys. B, 2021, 30(12): 120702.
[9] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[10] New measurement of thick target yield for narrow resonance at Ex=9.17 MeV in the 13C(p, γ)14N reaction
Yong-Le Dang(党永乐), Fu-Long Liu(刘伏龙), Guang-Yong Fu(付光永), Di Wu(吴笛), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2019, 28(6): 060706.
[11] Photoactivation experiment of 197Au(γ, n) performed with 9.17-MeV γ-ray from 13C(p, γ)14N
Yong-Le Dang(党永乐), Fu-Long Liu(刘伏龙), Guang-Yong Fu(付光永), Di Wu(吴笛), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2019, 28(10): 100701.
[12] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
[13] Atomic pair distribution function method development at the Shanghai Synchrotron Radiation Facility
Xiao-Juan Zhou(周晓娟), Ju-Zhou Tao(陶举洲), Han Guo(郭瀚), He Lin(林鹤). Chin. Phys. B, 2017, 26(7): 076101.
[14] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[15] Enhanced laser-induced plasma channels in air
Yanlei Zuo(左言磊), Xiaofeng Wei(魏晓峰), Kainan Zhou(周凯南), Xiaoming Zeng(曾小明),Jingqin Su(粟敬钦), Zhihong Jiao(焦志宏), Na Xie(谢娜), Zhaohui Wu(吴朝辉). Chin. Phys. B, 2016, 25(3): 035203.
No Suggested Reading articles found!