Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104501    DOI: 10.1088/1674-1056/acf040
RAPID COMMUNICATION Prev   Next  

Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect

Tuo Li(李拓)1,2, Ke Cheng(程可)2, Zheng Peng(彭政)3, Hui Yang(杨晖)4,1,‡, and Meiying Hou(厚美瑛)2,†
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Soft Matter Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physics, Central South University, Changsha 410012, China;
4 College of Medical Instrumentation, Shanghai University of Medicine&Health Sciences, Shanghai 201318, China
Abstract  We employ a Hall-effect magnetic sensor array to accurately track the trajectory of a single magnetic sphere, referred to as the "intruder," within a three-dimensional vibro-fluidized granular bed to unravel the underlying physical mechanism governing the motion of the intruder. Within the acceleration range of $3.5 {g}\ge \varGamma \ge 1.5 {g}$, we find that, regardless of the intruder's initial position, it consistently reaches the same equilibrium depth when the vibration acceleration ($\varGamma )$ and frequency ($\omega $) are fixed. For $\varGamma \le 2.5 {g}$, the equilibrium position lies on the surface of the granular bed, while for $\varGamma >2.5 {g}$, it shifts below the surface. Additionally, intruders with different densities exhibit varying equilibrium depths, with higher density resulting in a deeper equilibrium position. To understand the mechanism behind the intruder's upward or downward motion, we measure its rising or sinking velocities under different vibration parameters. Our findings demonstrate that the rising velocity of the intruder, under varying vibration accelerations ($\varGamma $) and frequencies ($\omega$), can be collapsed using the ratio $\varGamma /\omega $, while the sinking velocity remains unaffected by the vibration strength. This confirms that the upward motion of the larger sphere, associated with the Brazil nut effect, primarily arises from the void-filling mechanism of the bed particles. Furthermore, our experiments reveal that the presence of convection within the bed particles has minimal impact on the motion of the intruder.
Keywords:  granular matter      segregation      Brazil nut effect      vibro-fluidization  
Received:  08 July 2023      Revised:  04 August 2023      Accepted manuscript online:  15 August 2023
PACS:  45.70.-n (Granular systems)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
Fund: Project supported by the Space Application System of China Manned Space Program and the National Natural Science Foundation of China (Grant Nos. 12072200 and 12002213).
Corresponding Authors:  Meiying Hou, Hui Yang     E-mail:  mayhou@iphy.ac.cn;yangh_23@sumhs.edu.cn

Cite this article: 

Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛) Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect 2023 Chin. Phys. B 32 104501

[1] Umbanhowar P B, Lueptow R M and Ottino J M 2019 Annual review of chemical and biomolecular engineering 10 129
[2] Johnson C G Kokelaar B P, Iverson R M, Logan M, LaHusen R G and Gray J M N T 2012 Journal of Geophysical Research: Earth Surface 117 F01023
[3] Matsumura S, Richardson D C, Michel P, Schwartz S R and Ballouz R L 2014 Monthly Notices of the Royal Astronomical Society 443 3368
[4] Brone D and Muzzio F J 1997 Phys. Rev. E 56 1059
[5] Xie Z A, Wu P, Zhang S P, Chen S, Jia C, Liu C P and Wang L 2012 Phys. Rev. E 85 061302
[6] Shinbrot T 2004 Nature 429 352
[7] Jones R P, Ottino J M, Umbanhowar P B and Lueptow R M 2020 Phys. Rev. Res. 2 042021
[8] Roskilly S J, Colbourn E A, Alli O, Williams D, Paul K A, Welfare E H and Trusty P A 2010 Powder Technology 203 211
[9] LaMarche K R, Metzger M J, Glasser B J and Shinbrot T 2010 Phys. Rev. E 81 052301
[10] Windows-Yule C R K, Douglas G J M and Parker D J 2015 Phys. Rev. E 91 032205
[11] Fan Y and Hill K M 2015 Phys. Rev. E 92 022211
[12] Windows-Yule C R K and Parker D J 2014 Europhys. Lett. 106 64003
[13] Lozano C, Zuriguel I, Garcimartín A and Mullin T 2015 Phys. Rev. Lett. 114 178002
[14] Wen P P 2016 Dynamics of segregation behaviors in bi-disperse granular mixtures (Ph.D. Dissertation) (Beijing: Beijing Institute of Technology) (in Chinese)
[15] Van der Weele K 2008 Contemporary Physics 49 157
[16] Wildman R D and Parker D J 2002 Phys. Rev. Lett. 88 064301
[17] Feitosa K and Menon N 2002 Phys. Rev. Lett. 88 198301
[18] Wen P P, Zheng N, Li L S and Shi Q F 2014 Scientific Reports 4 6914
[19] Wen P P, Zheng N, Nian J W, Li L S and Shi Q F 2015 Scientific Reports 5 9880
[20] Ortiz-Cruz A, Santolalla C, Moreno E, De Los Reyes-Heredia J A and Alvarez-Ramirez J 2012 Physica A 391 1642
[21] Fu Y, Xi Y, Cao Y X and Wang Y J 2012 Phys. Rev. E 85 051311
[22] Buzzaccaro S, Secchi E and Piazza R 2013 Phys. Rev. Lett. 111 048101
[23] Dijksman J A, Rietz F, Lörincz K A, Van Hecke M and Losert W 2012 Rev. Sci. Instrum. 83 011301
[24] Ulrich S, Schröter M and Swinney H L 2007 Phys. Rev. E 76 042301
[25] Yan X Q, Shi Q F, Hou M Y, Lu K Q and Chan C K 2003 Phys. Rev. Lett. 91 014302
[26] Fortini A and Huang K 2015 Phys. Rev. E 91 032206
[27] Windows-Yule C R K, Lanchester E, Madkins D, and Parker D J 2018 Scientific Reports 8 12859
[28] Jullien R, Meakin P, and Pavlovitch A 1992 Phys. Rev. Lett. 69 640
[29] Idler V, Sánchez I, Paredes R and Botet R 2012 Euro. Phys. J. E 35 106
[30] Oshtorjani M K, Meng L and Müller C R 2021 Phys. Rev. E 103 062903
[31] Alexeev A, Royzen V, Dudko V, Goldshtein A and Shapiro M 1999 Phys. Rev. E 59 3231
[32] Li Z F, Zeng Z K, Xing Y, Li J, Zheng J D, Zheng J, Mao Q H, Zhang J, Hou M Y and Wang Y J 2021 Sci. Adv. 7 eabe8737
[33] Shi Q F, Yan X Q, Hou M Y, Niu X J and Lu K Q 2003 Chinese Science Bulletin 48 627
[34] Liu C P, Zhang F W, Wang L and Zhan S 2013 Powder Technology 247 14
[35] Vanel L, Rosato A D and Dave R N 1997 Phys. Rev. Lett. 78 1255
[36] Ellenberger J, Vandu C O and Krishna R 2006 Powder Technology 164 168
[37] Güttler C, von Borstel I, Schräpler R and Blum J 2013 Phys. Rev. E 87 044201
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[3] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[4] Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study
Pan-Pan Xu(徐攀攀), Jin-Yao Ma(马晋遥), Zhou-Hua Jiang(姜周华), Yi Zhang(张翊), Chao-Xiong Liang(梁超雄), Nan Dong(董楠), and Pei-De Han(韩培德). Chin. Phys. B, 2022, 31(11): 116402.
[5] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[6] Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe
Jinli Cao(曹金利), Wen Yang(杨文), Xinfu He(贺新福). Chin. Phys. B, 2019, 28(12): 126802.
[7] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
[8] Direct characterization of boron segregation at random and twin grain boundaries
Xiang-Long Li(李向龙), Ping Wu(吴平), Rui-Jie Yang(杨锐杰), Shi-Ping Zhang(张师平), Sen Chen(陈森), Xue-Min Wang(王学敏), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2017, 26(8): 086802.
[9] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
[10] Segregations and desorptions of Ge atoms in nanocomposite Si1-xGex films during high-temperature annealing
Yu Wang(汪煜), Meng Yang(杨濛), Gang Wang(王刚), Xiao-Xu Wei(魏晓旭), Jun-Zhuan Wang(王军转), Yun Li(李昀), Ze-Wen Zou(左则文), You-Dou Zheng(郑有炓), Yi Shi(施毅). Chin. Phys. B, 2017, 26(12): 126801.
[11] Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge1-xSnx films on Si (100) and Si (111)
Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣). Chin. Phys. B, 2017, 26(12): 127306.
[12] Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field
Bing Ji(冀冰), Ping Wu(吴平), Han Ren(任菡), Shiping Zhang(张师平), Abdul Rehman, Li Wang(王立). Chin. Phys. B, 2016, 25(7): 074704.
[13] Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm
Xin-Ze Lu(陆欣泽), Gui-Fang Shao(邵桂芳), Liang-You Xu(许两有), Tun-Dong Liu(刘暾东), Yu-Hua Wen(文玉华). Chin. Phys. B, 2016, 25(5): 053601.
[14] Stabilizing effect of plasma discharge on bubbling fluidized granular bed
Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(7): 074502.
[15] Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe
Liu Yu (刘煜), Zhao Jun-Hong (赵俊红). Chin. Phys. B, 2015, 24(3): 034502.
No Suggested Reading articles found!