Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 078301    DOI: 10.1088/1674-1056/accd4e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Induced dipole dominant giant electrorheological fluid

Rong Shen(沈容)1, Kunquan Lu(陆坤权)1,†, Zhaohui Qiu(邱昭晖)2, and Xiaomin Xiong(熊小敏)2
1 Beijing National Laboratory for Condensed Matter Physics, Key Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Abstract  Traditional dielectric electrorheological fluid (ER) is based on the interaction of dielectric particle polarization, and the yield stress is low, which cannot meet the application requirements. The giant ER (GER) effect is caused by orientations and interactions of polar molecules adsorbed on the particle surfaces. Despite the high yield stress, these polar molecules are prone to wear and fall off, resulting in a continuous reduction in shear stress of GER liquid, which is also not suitable for application. Here we introduce a new type of ER fluid called induced dipole dominant ER fluid (ID-ER), of which the particles contain oxygen vacancies or conductor microclusters both prepared by high energy ball milling (HEBM) technique. In the electric field $E$, oxygen vacancies or conductor microclusters form induced dipoles. Because the local electric field $E_{\rm loc}$ in the gaps between particles can be two to three orders of magnitude larger than $E,$ the induced dipole moments must be large. The strong interactions of these induced dipoles make the yield stress of the ID-ER fluid reaching more than 100 kPa. Since there are oxygen vacancies or conductor microclusters everywhere in the particles, the particles will not lose the function due to surface wear during use. The experimental results show that the ID-ER fluid possesses the advantages of high shear stress, low current density, short response time, good temperature stability, long service life, and anti-settlement, etc. The comprehensive performance is much better than the existing ER materials, and also the preparation method is simple and easy to repeat, thus it should be a new generation of ER fluid suitable for practical applications.
Keywords:  electrorheological fluid      induced dipole      vacancies      high energy ball milling  
Received:  08 March 2023      Revised:  22 March 2023      Accepted manuscript online:  16 April 2023
PACS:  83.80.Gv (Electro- and magnetorheological fluids)  
  77.22.Ej (Polarization and depolarization)  
  61.72.jd (Vacancies)  
  81.20.Wk (Machining, milling)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403000) and the National Natural Science Foundation of China (Grant No. 11874430).
Corresponding Authors:  Kunquan Lu     E-mail:  lukq@iphy.ac.cn

Cite this article: 

Rong Shen(沈容), Kunquan Lu(陆坤权), Zhaohui Qiu(邱昭晖), and Xiaomin Xiong(熊小敏) Induced dipole dominant giant electrorheological fluid 2023 Chin. Phys. B 32 078301

[1] Winslow W M 1949 J. Appl. Phys. 20 1137
[2] Davis L C 1992 Appl. Phys. Lett. 60 319
[3] Tao R and Jiang Q 1994 Phys. Rev. Lett. 73 205
[4] Hao T 2002 Adv. Colloid Interface Sci. 97 1
[5] Zhao X P and Yin J B 2011 Smart Soft Materials Turned by Electric Field (Beijing: Science Press) (in Chinese)
[6] Ma H R, Wen W J, Tam W Y and Sheng P 1996 Phys. Rev. Lett. 77 2499
[7] Zhang Y L, Ma Y, Lan Y C, Lu K Q and Liu W 1998 Appl Phys Lett. 73 1326
[8] Zhang Y L, Lu K Q, Rao G H, Tian Y, Zhang S H and Liang J K 2002 Appl Phys. Lett. 80 888
[9] Wen W J, Huang X, Yang S, Lu K Q and Sheng P 2003 Nat. Mater. 2 727
[10] Yin J B and Zhao X P 2004 Chem. Phys. Lett. 398 393
[11] Lu K Q, Shen R, Wang X Z, Sun G, Wen W J and Liu J X 2006 Chin. Phys. 15 2476
[12] Xu L, Tian W J, Wu X F, Cao J G, Zhou L W, Huang J P and Gu G Q 2008 J. Mater. Res. 23 409
[13] Shen R, Wang X Z, Lu Y, Wang D, Sun G, Cao Z X and Lu K Q 2009 Adv. Mater. 21 4631
[14] Orellana C S, He J B and Jaeger H M 2011 Soft Matter 7 8023
[15] Davis L C 1997 J. Appl. Phys. 81 1985
[16] Tao R J, Jiang Q and Sim H K 1995 Phys. Rev. E 52 2727
[17] Gonon P, Foulc J, Atten P and Boissy C 1999 J. Appl. Phys. 86 7160
[18] Tan P, Tian W J, Wu X F, Huang J Y, Zhou L W and Huang J P 2009 J. Phys. Chem. B 113 9092
[19] Jiao M C 2011 PhD thesis, Institute of Physics, Chinese Academy of Sciences (in Chinese)
[20] Wu X F, Zhou L W and Huang J P 2009 Eur. Phys. J. Appl. Phys. 48 31301
[21] Lu K Q and Shen R 2017 Smart Mater. Struct. 26 054005
[22] Shen R and Lu K Q Chinese invention patents: ZL 2022 1 0303339.3 and ZL 2022 1 0301781.2
[23] Qiu Z H, Shen R, Huang J, Lu K Q and Xiong X M 2019 J. Mater. Chem. C 7 5816
[24] Benjamin J S and Volin T E 1974 Metallurgical and Materials Transactions B 5 1929
[25] Suryanarayana C and Nasser Al-Aqeeli 2013 Progress in Materials Science 58 383
[26] Zhu X K, Lin Q S, Chen T L, Cheng B C and Cao J C 1999 Powder Metallurgy Technology 17 291
[27] El-Eskandarany M S 2001 Mechanical Alloying for Fabrication of Advanced Engineering Materials (New York: William Andrew Publishing, Inc.)
[28] Begin-Colin S, Girot T, Mocellin A, Caer G L 1999 Nanostructured Materials 12 195
[29] Pan X Y 2004 PhD thesis, Shanghai University (in Chinese)
[30] Rinaudo M G, Beltran A M, Fernandez M A, Cadús L E and Morales M R 2020 Materials Today Chemistry 17 100340
[31] Indris S, Amade R, Heitjans P, Finger M, Haeger A, Hesse D, Grunert W, Borger A and Beck K D 2005 J. Phys. Chem. B 109 23274
[32] Zhang B Q, Lu L and Lai M O 2003 Physica B 325 120
[33] Micic O I, Zhang Y N, Cromack K R, Trifunac A D and Thurnauer M C 1993 J. Phys. Chem. 97 7277
[34] Banakh O, Schmid P E, Sanjines R and Levy F 2002 Surface and Coatings Technology 151-152 272
[35] Li Z Q, Hu R, G J, Ru L Y and Wang H H 2012 Mater. Sci. Tech. 20 80
[36] Hou Q Y, Uyun G and Zhao C W 2013 Acta Phys. Sin. 62 167201 (in Chinese)
[37] Wang Q, Zhang S, He H N, Xie C L, Tang Y G, He C X, Shao M H and Wang H Y 2021 Chem. Asian J. 16 19
[40] Tang X, Li W H, Wang X J and Zhang P Q 1999 Int. J. Mod. Phys. B 13 1806
[41] Zhou L W 2019 Introduction to Soft Matter Physics (Singapore: World Scientific Publishing Co. Ltd.)
[38] Shen R, Liu R, Wang D, Chen K, Sun G and Lu K Q 2014 RSC Adv. 4 61968
[39] Zhao H Q, Shen R and Lu K Q 2018 Chin. Phys. B 27 078301
[42] Jiao M C, Sun G, Wang Q and Lu K Q 2012 Mod. Phys. Lett. B 26 1150007
[43] Sun M Z 2000 Fundamentals of Dielectric Physics (Shenzhen: South China University of Technology Press) (in Chinese)
[44] Zhao L, Blanka M K and Yoshio N 2017 Phys. Rev. B 95 054104
[45] Israelachvili J N 2000 Intermolecule and Surface Force (London: Academic)
[46] Wu J H, Song Z Y, Liu F H, Guo J J, Cheng Y C, Ma S Q and Xu G J 2016 NPG Asia Mater. 8 e322
[47] Liang Y D, Yuan X, Wang L J, Zhou X F, Ren X J, Huang Y F, Zhang M Y, Wu J B and Wen W J 2020 Colloid and Interface Science 564 381
[1] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[2] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[3] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[4] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[5] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[6] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[7] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[8] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[9] The electric field and frequency responses of giant electrorheological fluids
Hanqing Zhao(赵汉青), Rong Shen(沈容), Kunquan Lu(陆坤权). Chin. Phys. B, 2018, 27(7): 078301.
[10] Electrical field-driven ripening profiles of colloidal suspensions
Zi-Rui Wang(王子瑞), Wei-Jia Wen(温维佳), Li-Yu Liu(刘雳宇). Chin. Phys. B, 2018, 27(6): 068301.
[11] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[12] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[13] Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal
Jun-Hong Guo(郭俊宏), Ting-Hui Li(李廷会), Fang-Ren Hu(胡芳仁), Li-Zhe Liu(刘力哲). Chin. Phys. B, 2016, 25(12): 127103.
[14] Evolution of structure and magnetic properties in PrCo5 magnet for high energy ball milling in ethanol
Li Zhu-Bai (李柱柏), Lan Jian-Ting (兰剑亭), Zhang Xue-Feng (张雪峰), Liu Yan-Li (刘艳丽), Li Yong-Feng (李永峰). Chin. Phys. B, 2015, 24(8): 087501.
[15] Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes
Yu Xiao-Xia (于晓霞), Zhou Yan (周彦), Liu Jia (刘甲), Jin Hai-Bo (金海波), Fang Xiao-Yong (房晓勇), Cao Mao-Sheng (曹茂盛). Chin. Phys. B, 2015, 24(12): 127307.
No Suggested Reading articles found!