Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 076101    DOI: 10.1088/1674-1056/26/7/076101

Atomic pair distribution function method development at the Shanghai Synchrotron Radiation Facility

Xiao-Juan Zhou(周晓娟)1,2,3, Ju-Zhou Tao(陶举洲)1,2, Han Guo(郭瀚)4, He Lin(林鹤)4
1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2 Dongguan Institute of Neutron Science, Dongguan 523808, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

The atomic pair distribution function (PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the third generation synchrotron facility and spallation neutron source worldwide, the PDF method has developed quickly both experimentally and theoretically in recent years. Recently this method was successfully implemented at the Shanghai Synchrotron Radiation Facility (SSRF). The data quality is very high and this ensures the applicability of the method to study the subtle structural changes in complex materials. In this article, we introduce in detail this new method and show some experimental data we collected.

Keywords:  atomic pair distribution function      x-ray scattering      local structure      high energy x-ray  
Received:  16 October 2016      Revised:  30 March 2017      Accepted manuscript online: 
PACS:  61.05.C- (X-ray diffraction and scattering)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  61.46.-w (Structure of nanoscale materials)  

Project supported by the National Natural Science Foundation of China (Grant No.U1232112) and the National Key Basic Research Program of China (Grant No.2012CB825700).

Corresponding Authors:  He Lin     E-mail:

Cite this article: 

Xiao-Juan Zhou(周晓娟), Ju-Zhou Tao(陶举洲), Han Guo(郭瀚), He Lin(林鹤) Atomic pair distribution function method development at the Shanghai Synchrotron Radiation Facility 2017 Chin. Phys. B 26 076101

[1] Billinge S J L, Kwei G H and Takagi H 1994 Phys. Rev. Lett. 72 2282
[2] Lin H, Bozin E S, Billinge S J L, Androulakis J, Malliakas C D, Lin C H and Kanatzidis M G 2009 Phys. Rev. B 80 045204
[3] Petkov V, Buscaglia V, Buscaglia M T, Zhao Z and Ren Y 2008 Phys. Rev. B 78 054107
[4] Masadeh A S, Bozin E S, Farrow C L, Paglia G, Juhas P, Billinge S J L, Karkamkar A and Kanatzidis M G 2007 Phys. Rev. B 76 115413
[5] Egami T and Billinge S J L 2003 Underneath the Bragg Peaks:Structural Analysis of Complex Materials (Oxford:Elsevier) pp. 25–49
[6] Billinge S J L and Kanatzidis M G 2004 Chem. Commun. 2004 749
[7] Warren B E 1969 X-ray Diffraction (New York:Dover) pp. 116–123
[8] Toby B H and Egami T 1992 Acta Cryst. A 48 336
[9] Cargill G S Ⅲ \href Solid State Phys. 30 227
[10] Narten A H, Thiessen W E and Blum L 1982 Science 217 1033
[11] Billinge S J L 2008 J. Solid State Chem. 181 1695
[12] Lu K Q \href Prog. Phys. 1 125
[13] Sayers D E, Stern E A and Lytle F W 1971 Phys. Rev. Lett. 27 1204
[14] Jeong I K, Graf M J and Heffner R H 2005 J. Appl. Cryst. 38 55
[15] Yu Q, Wang X D, Lou H B, Cao Q P and Jiang J Z 2016 Acta Mater. 102 116
[16] Lin J C, Tong P, Zhou X J, Lin H, Ding Y W, Bai Y X, Chen L, Guo X G, Yang C, Song B, Wu Y, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 131902
[17] Li F, Yuan J S, Li D C, Li S Y and Han Z 2015 J Mol Struct 1081 38
[18] Ahmad A S, Zhao X N, Xu M X, Zhang D X, Hu J W, Fecht H J, Wang X D, Cao Q P and Jiang J Z 2017 J Low Temp Phys 186 172
[19] Guo X G, Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 202406
[20] Farrow C L and Billinge S J L 2009 Acta Cryst. A 65 232
[21] Warren B E, Krutter H and Morningstar O 1936 J. Am. Ceram. Soc. 19 202
[22] Chupas P J, Qiu X Y, Hanson J C, Lee P L, Grey C P and Billinge S J L 2003 J. Appl. Cryst. 36 1342
[23] Hammersley A P, Svenson S O, Hanfland M and Hauserman D 1996 High Pressure Res. 14 235
[24] Juhas P, Davis T, Farrow C L and Billinge S J L 2013 J. Appl. Cryst. 46 560
[25] Qiu X Y, Thompson J W and Billinge S J L 2004 J. Appl. Cryst. 37 678
[26] Farrow C L, Juhás P, Liu J W, Bryndin D, Bozin E S, Bloch J, Proffen T and Billinge S J L 2007 J. Phys. -Condens. Matter 19 335219
[27] Farrow C L, Juhás P, Liu J W, Bryndin D, Bozin E S, Bloch J, Proffen T and Billinge S J L 2009 PDFgui User Guide pp. 9–13
[28] Tucker M, Dove M, Goodwin A and Keen D 2012 RMCProfile User Manual pp. 4–7
[29] Shi C Y, Beidaghi M, Naguib M, Mashtalir O, Gogotsi Y and Billinge S J L 2014 Phys. Rev. Lett. 112 125501
[30] Rademacher N, Bayarjargal L, Morgenroth W, Winkler B, Ciezak-Jenkins J, Batyrev I G and Milman V 2014 Chem. Eur. J. 20 11531
[31] Huang J, Blakemore J D, Fazi D, Kokhan O, Schley N D, Crabtree R H, Brudvig G W and Tiede D M 2014 Phys. Chem. Chem. Phys. 16 1814
[32] Ekin J 2006 Experimental Techniques for Low-Temperature Measurements:Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press)
[33] Rehr J J 2006 Nature 440 618
[34] Juhas P, Cherba D M, Duxbury P M, Punch W F and Billinge S J L 2006 Nature 440 655
[35] Shastri S D 2004 J. Synchrotron Rad. 11 150
[36] Snigirev A and Snigireva I 2008 C. R. Phys. 9 507
[37] Hong X G, Ehm L, Zhong Z, Ghose S, Duffy T S and Weidner D J 2016 Sci. Rep. 6 21434
[38] Farrow C L, Shaw M, Kim H, Juhás P and Billinge S J L 2011 Phys. Rev. B 84 134105
[39] Krishnan S and Price D L 2000 J. Phys. -Condens. Matter 12 R145
[40] Benmore C J 2012 ISRN Mater. Sci. 2012 852905
[1] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[2] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[3] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[4] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[5] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[6] Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华). Chin. Phys. B, 2019, 28(5): 057701.
[7] Ultra-high-density local structure in liquid water
Cheng Yang(杨成), Chuanbiao Zhang(张传彪), Fangfu Ye(叶方富), Xin Zhou(周昕). Chin. Phys. B, 2019, 28(11): 116104.
[8] Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure
Jin-Hua Wang(王金华), Ze-Peng Li(李泽朋), Bo Liu(刘波), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2017, 26(2): 026101.
[9] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[10] In-situ study of precipitates in Al-Zn-Mg-Cu alloys using anomalous small-angle x-ray scattering
Chun-Ming Yang(杨春明), Feng-Gang Bian(边风刚), Bai-Qing Xiong(熊柏青), Dong-Mei Liu(刘冬梅), Yi-Wen Li(李怡雯), Wen-Qiang Hua(滑文强), Jie Wang(王劼). Chin. Phys. B, 2016, 25(6): 066101.
[11] In-situ SAXS study on PET/ PMMT composites during tensile tests
Wei-Dong Cheng(程伟东), Xiao-Hua Gu(顾晓华), Xue Song(宋雪), Peng Zeng(曾鹏), Zhao-Jun Wu(吴昭君), Xue-Qing Xing(邢雪青), Guang Mo(默广), Zhong-Hua Wu(吴忠华). Chin. Phys. B, 2016, 25(1): 017802.
[12] Extended x-ray absorption fine structure study of MnFeP0.56Si0.44 compound
Li Ying-Jie (李英杰), Haschaolu W (哈斯朝鲁), Wurentuya (乌仁图雅), Song Zhi-Qiang (宋志强), Ou Zhi-Qiang (欧志强), Tegus O (特古斯), Nakai Ikuo (中井生央). Chin. Phys. B, 2015, 24(8): 086101.
[13] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[14] Selection rules for electric multipole transition of diatomic molecule in scattering experiments
Zhu Lin-Fan (朱林繁), Tian Hong-Chun (田红春), Liu Ya-Wei (刘亚伟), Kang Xu (康旭), Liu Guo-Xing (刘国兴). Chin. Phys. B, 2015, 24(4): 043101.
[15] Structural modeling of proteins by integrating small-angle x-ray scattering data
Zhang Yong-Hui (张泳辉), Peng Jun-Hui (彭俊辉), Zhang Zhi-Yong (张志勇). Chin. Phys. B, 2015, 24(12): 126101.
No Suggested Reading articles found!