Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124206    DOI: 10.1088/1674-1056/ac140d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier

Huijun He(何会军)1,2, Jun Yu(余军)1, Wentao Zhu(朱文涛)1, Qingdian Lin(林庆典)1, Xiaoyang Guo(郭晓杨)1,†, Cangtao Zhou(周沧涛)1, and Shuangchen Ruan(阮双琛)1,2
1 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University(SZTU), Shenzhen 518118, China;
2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz. Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior. A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator. The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns. The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24% in the main amplifier. The M2 parameter of the output laser is <1.4.
Keywords:  ytterbium laser system      Yb:YAG laser amplifier      cryogenic laser amplification      high energy laser amplification  
Received:  27 May 2021      Revised:  09 July 2021      Accepted manuscript online:  14 July 2021
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.-v (Laser optical systems: design and operation)  
  42.60.Rn (Relaxation oscillations and long pulse operation)  
Fund: Project supported by the National National Science Foundation of China (Grant Nos. 12004262 and 62005184) and the Natural Science Foundation of Top Talent of SZTU (Grant No. 202024555101039).
Corresponding Authors:  Xiaoyang Guo     E-mail:  guoxiaoyang@sztu.edu.cn

Cite this article: 

Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛) A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier 2021 Chin. Phys. B 30 124206

[1] Reagan B A, Baumgarten C, Jankowska E, Chi H, Bravo H, Dehne K, Pedicone M, Yin L, Wang H C, Menoni C S and Rocca J J 2018 High Power Laser Sci. Eng. 6 01000e11
[2] Manni J, Harris D and Fan T Y 2018 Opt. Commun. 417 54
[3] Guo X Y, Tokita S and Kawanaka J 2019 Appl. Phys. B 125 1
[4] Divoky M, Smrz M, Chyla M, et al. 2014 High Power Laser Sci. Eng. 2 02000e14
[5] Aggarwal R L, Ripin D J, Ochoa J R and Fan T Y 2005 J. Appl. Phys. 98 103514
[6] Fan T Y, Crow T and Hoden B 1998 Airborne Laser Advanced Technology, International Society for Optics and Photonics 3381 200
[7] Brown D C, Tornegard S and Kolis J 2016 High Power Laser Sci. Eng. 4 02000e15
[8] Calendron A L, Meier J, Hemmer M, Zapata L E, Reichert F, Cankaya H, Schimpf D N, Hua Y, Chang G Q, Kalaydzhyan A, Fallahi A, Matlis N H and Kärtner F X 2018 High Power Laser Sci. Eng. 6 01000e12
[9] Zhang Y K, Lu J Z, Ren X D, Yao H B and Yao H X 2009 Mater. & Design 30 1697
[10] Jiang Y, Yang J, Li P, Si H, Fu X and Liu Q 2020 Microw. Opt. Technol. Lett. 62 3655
[11] Guo X, Tokita S and Kawanaka J 2019 Opt. Express 27 45
[12] Wang Y, Chi H, Baumgarten C, Dehne K, Meadows A R, Davenport A, Murray G, Reagan B A, Menoni C S and Rocca J J 2020 Opt. Lett. 45 6615
[13] Gonçalvés-Novo T, Albach D, Vincent B, Arzakantsyan M and Chanteloup J C 2013 Opt. Express 21 855
[14] Cheng X J, Wang J L, Yang Z G, Liu J, Li L, Shi X C, Huang W F, Wang J F and Chen W B 2014 High Power Laser Sci. Eng. 2 e18
[15] Xiao K B, Yuan X D, Yan X W, Li M, Jiang X Y, Wang Z G, Li M Z, Zheng W G and Zheng J G 2016 Laser Phys. 26 035003
[16] Morrissey F X, Fan T Y, Miller D E and Rand D 2017 Opt. Lett. 42 707
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[4] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[5] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[6] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[7] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[8] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[9] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[10] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[11] All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier
Renchong Lv(吕仁冲), Hao Teng(滕浩), Jiajun Song(宋贾俊), Renzhu Kang(康仁铸), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(9): 094206.
[12] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[13] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[14] Solar energy full-spectrum perfect absorption and efficient photo-thermal generation
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强). Chin. Phys. B, 2021, 30(8): 084206.
[15] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
No Suggested Reading articles found!