Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050309    DOI: 10.1088/1674-1056/acb0bd
GENERAL Prev   Next  

Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert-Schmidt distance

Shaohua Xiang(向少华)1,2,3,†, Shanshan Li(李珊珊)1,2,3, and Xianwu Mi(米贤武)1,2
1 College of Physics, Electronics and Intelligent Manufacturing, Huaihua University, Huaihua 418008, China;
2 Hunan Provincial Key Laboratory of Ecological Agriculture Intelligent Control Technology, Huaihua 418008, China;
3 Research Center for Information Technological Innovation, Huaihua University, Huaihua 418008, China
Abstract  Non-Gaussianity of quantum states is a very important source for quantum information technology and can be quantified by using the known squared Hilbert-Schmidt distance recently introduced by Genoni et al. (Phys. Rev. A 78 042327 (2007)). It is, however, shown that such a measure has many imperfects such as the lack of the swapping symmetry and the ineffectiveness evaluation of even Schrödinger-cat-like states with small amplitudes. To deal with these difficulties, we propose an improved measure of non-Gaussianity for quantum states and discuss its properties in detail. We then exploit this improved measure to evaluate the non-Gaussianities of some relevant single-mode non-Gaussian states and multi-mode non-Gaussian entangled states. These results show that our measure is reliable. We also introduce a modified measure for Gaussianity following Mandilara and Cerf (Phys. Rev. A 86 030102(R) (2012)) and establish a conservation relation of non-Gaussianity and Gaussianity of a quantum state.
Keywords:  non-Gaussianity measure      non-Gaussian states      phase-space distribution function  
Received:  18 October 2022      Revised:  18 October 2022      Accepted manuscript online:  06 January 2023
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2021JJ30535) and the Research Foundation for Young Teachers from the Education Department of Hunan Province of China (Grant No. 20B460).
Corresponding Authors:  Shaohua Xiang     E-mail:  shxiang97@163.com

Cite this article: 

Shaohua Xiang(向少华), Shanshan Li(李珊珊), and Xianwu Mi(米贤武) Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert-Schmidt distance 2023 Chin. Phys. B 32 050309

[1] Opatrný T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[2] Cerf N J, Kruger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501
[3] Fiurasek J 2002 Phys. Rev. Lett. 89 137904
[4] Lee J, Park J and Nha H 2019 NPJ Quantum Inform. 5 49
[5] Rossi M A C, Albarelli F and Paris M G A 2016 Phys. Rev. A 93 053805
[6] Genoni M G, Paris M G A and Banaszek K 2007 Phys. Rev. A 76 042327
[7] Genoni M G, Paris M G A and Banaszek K 2008 Phys. Rev. A 78 060303
[8] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[9] Marian P, Ghiu I and Marian T A 2013 Phys. Rev. A 88 012316
[10] Ivan J S, Kumar M S and Simon R 2012 Quantum Inform. Proc. 11 853
[11] Ghiu I, Marian P and Marian T A 2013 Phys. Scr. T153 014028
[12] Fu S S, Luo S L and Zhang Y 2020 Phys. Rev. A 101 012125
[13] Fu S S, Luo S L and Zhang Y 2020 Phys. Lett. A 384 126037
[14] Gilchrist A, Langford N K and Nielsen M A 2005 Phys. Rev. A 71 062310
[15] Bosyk G M, Osan T M, Lamberti P M and Portesi M 2014 Phys. Rev. A 89 034101
[16] Mendonca P E M F, Napolitano R D J, Marchiolli M A, Foster C J and Liang Y C 2008 Phys. Rev. A 78 052330
[17] Mandilara A and Cerf N J 2012 Phys. Rev. A 86 030102
[18] Dodonov V V, Man'ko O V, Man'ko V I and Wunsche A 2000 J. Mod. Opt. 47 633
[19] Xiang S H and Song K H 2015 Eur. Phys. J. D 69 260
[20] Xiang S H, Wen W, Zhao Y J and Song K H 2018 Phys. Rev. A 97 042303
[21] Hillery M 1987 Phys. Rev. A 35 725
[22] Hillery M 1989 Phys. Rev. A 39 2994
[23] Ozawa M 2000 Phys. Lett. A 268 158
[24] Soto F and Claverie P 1983 J. Math. Phys. 24 97
[25] Miszczak J A, Puchala Z, Horodecki P, Uhlmann A and Zyczkowski K 2009 Quantum Inform. Comput. 9 0103
[26] Mandilara A, Karpov E and Cerf N J 2009 Phys. Rev. A 79 062302
[27] Filip R and Mista L J 2011 Phys. Rev. Lett. 106 200401
[28] Siyouri F, Baz M E and Hassouni Y 2016 Quantum Inform. Proc. 15 4237
[29] Raussendorf R, Browne D E, Delfosse N, Okay C and Bermejo-Vega J 2017 Phys. Rev. A 95 052334
[30] An N B 2004 Phys. Rev. A 69 022315
[31] Jeong H and An N B 2006 Phys. Rev. A 74 022104
[32] Allegra M, Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 100503
[33] Hertz A, Karpov E, Mandilara A and Cerf N J 2016 Phys. Rev. A 93 032330
[34] Walschaers M, Fabre C, Parigi V and Treps N 2017 Phys. Rev. A 96 053835
[35] Mista L J, Tatham R, Girolami D, Korolkova N and Adesso G 2011 Phys. Rev. A 83 042325
[36] Giorda P, Allegra M and Paris M G A 2012 Phys. Rev. A 86 052328
[37] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[38] Oh C, Lee C, Rockstuhl C, Jeong H, Kim J, Nha H and Lee S Y 2019 NPJ Quantum Inform. 5 10
[1] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
No Suggested Reading articles found!