Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110304    DOI: 10.1088/1674-1056/ac8739
GENERAL Prev   Next  

Topological superconductivity in Janus monolayer transition metal dichalcogenides

Xian-Dong Li(李现东)1, Zuo-Dong Yu(余作东)1,2,†, Wei-Peng Chen(陈伟鹏)3,‡, and Chang-De Gong(龚昌德)1,4,5
1 National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China;
2 School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China;
3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
4 Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The Janus monolayer transition metal dichalcogenides (TMDs) MXY (M=Mo, W, etc. and X,Y=S, Se, etc.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature Tc, of which the Fermi surface (FS) sheets centered around both ărGamma and K(K) points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically, at relatively high chemical potentials, we obtain a time-reversal invariant s+f+p-wave mixed superconducting state, which is fully gapped and topologically nontrivial, i.e., a Z2 topological state. On the other hand, a time-reversal symmetry breaking d+p+f-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number |C|=6 at appropriate pairing strength, demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.
Keywords:  topological      superconductivity      Janus      transition metal dichalcogenides (TMDs)  
Received:  08 June 2022      Revised:  19 July 2022      Accepted manuscript online:  05 August 2022
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Dw (Superconductivity phase diagrams)  
  82.45.Mp (Thin layers, films, monolayers, membranes)  
Fund: We acknowledge Wei-Jian Li for useful discussions. Xian-Dong Li also thanks Ai-Lei He for helpful suggestions. Project supported by the National Natural Science Foundation of China (Grant No. 11904155).
Corresponding Authors:  Zuo-Dong Yu, Wei-Peng Chen     E-mail:  richzyu@gmail.com;chenwp@sustech.edu.cn

Cite this article: 

Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德) Topological superconductivity in Janus monolayer transition metal dichalcogenides 2022 Chin. Phys. B 31 110304

[1] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[2] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[3] Kitaev A 2009 AIP Conf. Proc. 1134 22
[4] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
[5] Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 New J. Phys. 12 065010
[6] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[7] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[8] Fidkowski L, Chen X and Vishwanath A 2013 Phys. Rev. X 3 041016
[9] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[10] Rice T M and Sigrist M 1995 J. Phys.: Condens. Matter 7 L643
[11] Baskaran G 1996 Physica B (Amsterdam) 223 490
[12] Nelson K D, Mao Z Q, Maeno Y and Liu Y 2004 Science 306 1151
[13] Huang W 2021 Chin. Phys. B 30 107403
[14] Stewart G R 1984 Rev. Mod. Phys. 56 755
[15] Varma C M 1985 Phys. Rev. Lett. 55 2723
[16] De Visser A, Menovsky A and Franse J 1987 Phys. B+C (Amsterdam) 147 81
[17] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[18] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[19] Clayman B and Frindt R 1971 Solid State Commun. 9 1881
[20] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[21] Huang C L, Lin J Y, Chang Y T, Sun C P, Shen H Y, Chou C C, Berger H, Lee T K and Yang H D 2007 Phys. Rev. B 76 212504
[22] Berthier C, Molinie P and Jerome D 1976 Solid State Commun. 18 1393
[23] Mutka H 1983 Phys. Rev. B 28 2855
[24] Castro Neto A H 2001 Phys. Rev. Lett. 86 4382
[25] Lu J M, Zheliuk O, Leermakers I, Yuan N F Y, Zeitler U, Law T and Ye J T 2015 Science 350 1353
[26] Xi X, Wang Z, Zhao W, Park J H, Tuen Law K, Berger H, Forro L, Shan J and Mak K 2015 Nat. Phys. 12 139
[27] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, et al. 2016 Nat. Phys. 12 144
[28] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802
[29] Lu J, Zheliuk O, Chen Q, Leermakers I, Hussey N E, Zeitler U and Ye J 2018 Proc. Natl. Acad. Sci. USA 115 3551
[30] Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, et al. 2018 Nat. Commun. 9 1427
[31] Yuan N F Q, Mak K F and Law K T 2014 Phys. Rev. Lett. 113 097001
[32] Hsu Y T, Vaezi A, Fischer M H and Kim E A 2017 Nat. Commun. 8 14985
[33] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, et al. 2017 Nat. Nanotechnol. 12 744
[34] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, et al. 2017 ACS Nano 11 8192
[35] Li R, Cheng Y and Huang W 2018 Small 14 1802091
[36] Hu T, Jia F, Zhao G, Wu J, Stroppa A and Ren W 2018 Phys. Rev. B 97 235404
[37] Shi W and Wang Z 2018 J. Phys.: Condens. Matter 30 215301
[38] He J and Li S 2018 Comput. Mater. Sci. 152 151
[39] Zhou W, Chen J, Yang Z, Liu J and Ouyang F 2019 Phys. Rev. B 99 075160
[40] Yagmurcukardes M, Sevik C and Peeters F M 2019 Phys. Rev. B 100 045415
[41] Zhang K, Guo Y, Ji Q, Lu A Y, Su C, Wang H, Puretzky A A, Geohegan D B, Qian X, Fang S, et al. 2020 J. Am. Chem. Soc. 142 17499
[42] Mikkelsen A E, Bolle F T, Thygesen K S, Vegge T and Castelli I E 2021 Phys. Rev. Mater. 5 014002
[43] Petri. M M, Kremser M, Barbone M, Qin Y, Sayyad Y, Shen Y, Tongay S, Finley J J, Botello-Mendez A R and Muller K 2021 Phys. Rev. B 103 035414
[44] Zheng T, Lin Y C, Yu Y, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C, Ivanov I N, Duscher G, Geohegan D B, et al. 2021 Nano. Lett. 21 931
[45] Sanders C E, Dendzik M, Ngankeu A S, Eich A, Bruix A, Bianchi M, Miwa J A, Hammer B, Khajetoorians A A and Hofmann P 2016 Phys. Rev. B 94 081404
[46] Chen W, Zhu Q, Zhou Y and An J 2019 Phys. Rev. B 100 054503
[47] Navarro-Moratalla E, Island J, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J, Agrait N, et al. 2016 Nat. Commun. 7 11043
[48] Zhao J, Wijayaratne K, Butler A, Yang J, Malliakas C D, Chung D Y, Louca D, Kanatzidis M G, van Wezel J and Chatterjee U 2017 Phys. Rev. B 96 125103
[49] Rossnagel K, Rotenberg E, Koh H, Smith N V and Kipp L 2005 Phys. Rev. B 72 121103
[50] Ge Y and Liu A Y 2012 Phys. Rev. B 86 104101
[51] Yan J A, Cruz M A D, Cook B and Varga K 2015 Sci. Rep. 5 16646
[52] Sato M and Fujimoto S 2009 Phys. Rev. B 79 094504
[53] Tanaka Y, Mizuno Y, Yokoyama T, Yada K and Sato M 2010 Phys. Rev. Lett. 105 097002
[54] Goryo J, Fischer M H and Sigrist M 2012 Phys. Rev. B 86 100507
[55] Youn S J, Fischer M H, Rhim S H, Sigrist M and Agterberg D F 2012 Phys. Rev. B 85 220505
[56] Schnyder A P, Brydon P M R and Timm C 2012 Phys. Rev. B 85 024522
[57] Yip S 2014 Annu. Rev. Condens. Matter Phys. 5 15
[58] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[59] Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239
[60] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521
[61] Galvis J A, Rodiere P, Guillamon I, Osorio M R, Rodrigo J G, Cario L, Navarro-Moratalla E, Coronado E, Vieira S and Suderow H 2013 Phys. Rev. B 87 094502
[62] Galvis J A, Chirolli L, Guillamon I, Vieira S, Navarro-Moratalla E, Coronado E, Suderow H and Guinea F 2014 Phys. Rev. B 89 224512
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[7] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[8] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[9] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[10] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[11] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[12] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[13] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[14] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[15] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
No Suggested Reading articles found!