|
|
Topological superconductivity in Janus monolayer transition metal dichalcogenides |
Xian-Dong Li(李现东)1, Zuo-Dong Yu(余作东)1,2,†, Wei-Peng Chen(陈伟鹏)3,‡, and Chang-De Gong(龚昌德)1,4,5 |
1 National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; 2 School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; 3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 4 Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China; 5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The Janus monolayer transition metal dichalcogenides (TMDs) $MXY$ ($M={\rm Mo}$, W, $etc$. and $X, Y={\rm S}$, Se, $etc$.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature $T_{\rm c}$, of which the Fermi surface (FS) sheets centered around both $ărGamma$ and $K (K')$ points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically, at relatively high chemical potentials, we obtain a time-reversal invariant $s + f + p$-wave mixed superconducting state, which is fully gapped and topologically nontrivial, $i.e.$, a $\mathbb{Z}_2$ topological state. On the other hand, a time-reversal symmetry breaking $d + p + f$-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number $|C|=6$ at appropriate pairing strength, demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.
|
Received: 08 June 2022
Revised: 19 July 2022
Accepted manuscript online: 05 August 2022
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
82.45.Mp
|
(Thin layers, films, monolayers, membranes)
|
|
Fund: We acknowledge Wei-Jian Li for useful discussions. Xian-Dong Li also thanks Ai-Lei He for helpful suggestions. Project supported by the National Natural Science Foundation of China (Grant No. 11904155). |
Corresponding Authors:
Zuo-Dong Yu, Wei-Peng Chen
E-mail: richzyu@gmail.com;chenwp@sustech.edu.cn
|
Cite this article:
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德) Topological superconductivity in Janus monolayer transition metal dichalcogenides 2022 Chin. Phys. B 31 110304
|
[1] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [2] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125 [3] Kitaev A 2009 AIP Conf. Proc. 1134 22 [4] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001 [5] Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 New J. Phys. 12 065010 [6] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [7] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887 [8] Fidkowski L, Chen X and Vishwanath A 2013 Phys. Rev. X 3 041016 [9] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501 [10] Rice T M and Sigrist M 1995 J. Phys.: Condens. Matter 7 L643 [11] Baskaran G 1996 Physica B (Amsterdam) 223 490 [12] Nelson K D, Mao Z Q, Maeno Y and Liu Y 2004 Science 306 1151 [13] Huang W 2021 Chin. Phys. B 30 107403 [14] Stewart G R 1984 Rev. Mod. Phys. 56 755 [15] Varma C M 1985 Phys. Rev. Lett. 55 2723 [16] De Visser A, Menovsky A and Franse J 1987 Phys. B+C (Amsterdam) 147 81 [17] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401 [18] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502 [19] Clayman B and Frindt R 1971 Solid State Commun. 9 1881 [20] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003 [21] Huang C L, Lin J Y, Chang Y T, Sun C P, Shen H Y, Chou C C, Berger H, Lee T K and Yang H D 2007 Phys. Rev. B 76 212504 [22] Berthier C, Molinie P and Jerome D 1976 Solid State Commun. 18 1393 [23] Mutka H 1983 Phys. Rev. B 28 2855 [24] Castro Neto A H 2001 Phys. Rev. Lett. 86 4382 [25] Lu J M, Zheliuk O, Leermakers I, Yuan N F Y, Zeitler U, Law T and Ye J T 2015 Science 350 1353 [26] Xi X, Wang Z, Zhao W, Park J H, Tuen Law K, Berger H, Forro L, Shan J and Mak K 2015 Nat. Phys. 12 139 [27] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, et al. 2016 Nat. Phys. 12 144 [28] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802 [29] Lu J, Zheliuk O, Chen Q, Leermakers I, Hussey N E, Zeitler U and Ye J 2018 Proc. Natl. Acad. Sci. USA 115 3551 [30] Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, et al. 2018 Nat. Commun. 9 1427 [31] Yuan N F Q, Mak K F and Law K T 2014 Phys. Rev. Lett. 113 097001 [32] Hsu Y T, Vaezi A, Fischer M H and Kim E A 2017 Nat. Commun. 8 14985 [33] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, et al. 2017 Nat. Nanotechnol. 12 744 [34] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, et al. 2017 ACS Nano 11 8192 [35] Li R, Cheng Y and Huang W 2018 Small 14 1802091 [36] Hu T, Jia F, Zhao G, Wu J, Stroppa A and Ren W 2018 Phys. Rev. B 97 235404 [37] Shi W and Wang Z 2018 J. Phys.: Condens. Matter 30 215301 [38] He J and Li S 2018 Comput. Mater. Sci. 152 151 [39] Zhou W, Chen J, Yang Z, Liu J and Ouyang F 2019 Phys. Rev. B 99 075160 [40] Yagmurcukardes M, Sevik C and Peeters F M 2019 Phys. Rev. B 100 045415 [41] Zhang K, Guo Y, Ji Q, Lu A Y, Su C, Wang H, Puretzky A A, Geohegan D B, Qian X, Fang S, et al. 2020 J. Am. Chem. Soc. 142 17499 [42] Mikkelsen A E, Bolle F T, Thygesen K S, Vegge T and Castelli I E 2021 Phys. Rev. Mater. 5 014002 [43] Petri. M M, Kremser M, Barbone M, Qin Y, Sayyad Y, Shen Y, Tongay S, Finley J J, Botello-Mendez A R and Muller K 2021 Phys. Rev. B 103 035414 [44] Zheng T, Lin Y C, Yu Y, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C, Ivanov I N, Duscher G, Geohegan D B, et al. 2021 Nano. Lett. 21 931 [45] Sanders C E, Dendzik M, Ngankeu A S, Eich A, Bruix A, Bianchi M, Miwa J A, Hammer B, Khajetoorians A A and Hofmann P 2016 Phys. Rev. B 94 081404 [46] Chen W, Zhu Q, Zhou Y and An J 2019 Phys. Rev. B 100 054503 [47] Navarro-Moratalla E, Island J, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J, Agrait N, et al. 2016 Nat. Commun. 7 11043 [48] Zhao J, Wijayaratne K, Butler A, Yang J, Malliakas C D, Chung D Y, Louca D, Kanatzidis M G, van Wezel J and Chatterjee U 2017 Phys. Rev. B 96 125103 [49] Rossnagel K, Rotenberg E, Koh H, Smith N V and Kipp L 2005 Phys. Rev. B 72 121103 [50] Ge Y and Liu A Y 2012 Phys. Rev. B 86 104101 [51] Yan J A, Cruz M A D, Cook B and Varga K 2015 Sci. Rep. 5 16646 [52] Sato M and Fujimoto S 2009 Phys. Rev. B 79 094504 [53] Tanaka Y, Mizuno Y, Yokoyama T, Yada K and Sato M 2010 Phys. Rev. Lett. 105 097002 [54] Goryo J, Fischer M H and Sigrist M 2012 Phys. Rev. B 86 100507 [55] Youn S J, Fischer M H, Rhim S H, Sigrist M and Agterberg D F 2012 Phys. Rev. B 85 220505 [56] Schnyder A P, Brydon P M R and Timm C 2012 Phys. Rev. B 85 024522 [57] Yip S 2014 Annu. Rev. Condens. Matter Phys. 5 15 [58] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [59] Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239 [60] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521 [61] Galvis J A, Rodiere P, Guillamon I, Osorio M R, Rodrigo J G, Cario L, Navarro-Moratalla E, Coronado E, Vieira S and Suderow H 2013 Phys. Rev. B 87 094502 [62] Galvis J A, Chirolli L, Guillamon I, Vieira S, Navarro-Moratalla E, Coronado E, Suderow H and Guinea F 2014 Phys. Rev. B 89 224512 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|