Abstract We propose an optimized cluster density matrix embedding theory (CDMET). It reduces the computational cost of CDMET with simpler bath states. And the result is as accurate as the original one. As a demonstration, we study the distant correlations of the Heisenberg J1-J2 model on the square lattice. We find that the intermediate phase (0.43≤sssim J2≤sssim 0.62) is divided into two parts. One part is a near-critical region (0.43≤J2≤0.50). The other part is the plaquette valence bond solid (PVB) state (0.51≤J2≤0.62). The spin correlations decay exponentially as a function of distance in the PVB.
Received: 19 March 2021
Revised: 09 June 2021
Accepted manuscript online: 21 June 2021
PACS:
03.65.-w
(Quantum mechanics)
Corresponding Authors:
Quan-lin Jie
E-mail: qljie@whu.edu.cn
Cite this article:
Hao Geng(耿浩) and Quan-lin Jie(揭泉林) An optimized cluster density matrix embedding theory 2021 Chin. Phys. B 30 090305
[1] Wang L and Sandvik A W 2018 Phys. Rev. Lett.121 107202 [2] Zhang H and Lamas C A 2013 Phys. Rev. B87 024415 [3] Chen Y, Xie Z Y and Yu J F 2018 Chin. Phys. B27 080503 [4] Chen J, Liao H J, Xie H D, Han X J, Huang R Z, Cheng S, Wei Z C, Xie Z Y and Xiang T 2017 Chin. Phys. Lett.34 050503 [5] Liu J L and Liang J Q 2019 Chin. Phys. B28 110304 [6] Tan X D, Jin B Q and Gao W 2013 Chin. Phys. B22 020308 [7] Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B19 050304 [8] Zhu X and Tong P Q 2008 Chin. Phys. B17 1623 [9] Bao A, Chen Y H and Zhang X Z 2013 Chin. Phys. B22 110309 [10] Knizia G and Chan G K L 2012 Phys. Rev. Lett.109 186404 [11] Bulik I W, Scuseria G E and Dukelsky J 2014 Phys. Rev. B89 035140 [12] Chen Q, Booth G H, Sharma S, Knizia G and Chan G K L 2014 Phys. Rev. B89 165134 [13] Fan Z and Jie Q L 2015 Phys. Rev. B91 195118 [14] Qin J B, Jie Q L and Fan Z 2016 Computer Physics Communications204 38 [15] Gunst K, Wouters S, Baerdemacker S D and Neck D V 2017 Phys. Rev. B95 195127 [16] Gong S S, Zhu W, Sheng D N, Motrunich O I and Fisher M P A 2014 Phys. Rev. Lett.113 027201 [17] Gelfand M P, Singh R R P and Huse D A 1989 Phys. Rev. B40 10801 [18] Jiang H C, Yao H and Balents L 2012 Phys. Rev. B86 024424 [19] Murg V, Verstraete F and Cirac J I 2009 Phys. Rev. B79 195119 [20] Darradi R, Derzhko O, Zinke R, Schulenburg J, Krüger S E and Richter J 2008 Phys. Rev. B78 214415 [21] Chandra P and Doucot B 1988 Phys. Rev. B38 9335 [22] Read N and Sachdev S 1989 Phys. Rev. Lett.62 1694 [23] Takano K, Kito Y, Ono Y and Sano K 2003 Phys. Rev. Lett.91 197202 [24] Mezzacapo F 2012 Phys. Rev. B86 045115 [25] Yu J F and Kao Y J 2012 Phys. Rev. B85 094407 [26] Li T, Becca F, Hu W and Sorella S 2012 Phys. Rev. B86 075111 [27] Wang L, Poilblanc D, Gu Z C, Wen X G and Verstraete F 2013 Phys. Rev. Lett.111 037202 [28] Hu W J, Becca F, Parola A and Sorella S 2013 Phys. Rev. B88 060402 [29] Doretto R L 2014 Phys. Rev. B89 104415 [30] Henelius P and Sandvik A W 2000 Phys. Rev. B62 1102 [31] Wang L, Gu Z C, Verstraete F and Wen X G 2016 Phys. Rev. B94 075143 [32] Sirker J, Zheng.W, Sushkov O P and Oitmaa J 2006 Phys. Rev. B73 184420 [33] Jongh M S L D C D, Leeuwen J M J V and Saarloos W V 2000 Phys. Rev. B62 14844 [34] Sushkov O P, Oitmaa J and Zheng W 2001 Phys. Rev. B63 104420 [35] Morita S, Kaneko R and Imada M 2015 J. Phys. Soc. Jpn.84 024720
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.