|
|
Wave-particle duality relation with a quantum N-path beamsplitter |
Dong-Yang Wang(王冬阳)1, Jun-Jie Wu(吴俊杰)1,†, Yi-Zhi Wang(王易之)1, Yong Liu(刘雍)1,2, An-Qi Huang(黄安琪)1, Chun-Lin Yu(于春霖)3, and Xue-Jun Yang(杨学军)1 |
1 Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China; 2 College of Information and Communication, National University of Defense Technology, Xi'an 710006, China; 3 China Greatwall Quantum Laboratory, China Greatwall Technology Group CO., LTD., Changsha 410073, China |
|
|
Abstract The wave-particle duality relation derived by Englert sets an upper bound of the extractable information from wave and particle properties in a two-path interferometer. Surprisingly, previous studies demonstrated that the introduction of a quantum beamsplitter in the interferometer could break the limitation of this upper bound, due to interference between wave and particle states. Along the other line, a lot of efforts have been made to generalize this relation from the two-path setup to the N-path case. Thus, it is an interesting question that whether a quantum N-path beamsplitter can break the limitation as well. This paper systemically studies the model of a quantum N-path beamsplitter, and finds that the generalized wave-particle duality relation between interference visibility and path distinguishability is also broken in certain situations. We further study the maximal extractable information's reliance on the interference between wave and particle properties, and derive a quantitative description. We then propose an experimental methodology to verify the break of the limitation. Our work reflects the effect of quantum superposition on wave-particle duality, and exhibits a new aspect of the relation between visibility and path distinguishability in N-path interference. Moreover, it implies the observer's influence on wave-particle duality.
|
Received: 23 December 2020
Revised: 27 February 2021
Accepted manuscript online: 02 March 2021
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
42.50.Xa
|
(Optical tests of quantum theory)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61632021). |
Corresponding Authors:
Jun-Jie Wu
E-mail: junjiewu@nudt.edu.cn
|
Cite this article:
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军) Wave-particle duality relation with a quantum N-path beamsplitter 2021 Chin. Phys. B 30 050302
|
[1] Bohr N 1928 Naturwissenschaften 16 245 [2] Bohr N 1928 Nature 121 580 [3] Feynman R P, Leighton R B and Sands M 1965 The Feynman Lectures on Physics (American Association of Physics Teachers) [4] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A, and Roch J F 2008 Phys. Rev. Lett. 100 220402 [5] Englert B G 1996 Phys. Rev. Lett. 77 2154 [6] Dürr S, Nonn T and Rempe G 1998 Phys. Rev. Lett. 81 5705 [7] Peng X, Zhu X, Fang X, Feng M, Liu M and Gao K 2003 J. Phys. A: Math. Gen. 36 2555 [8] Peng X, Zhu X, Suter D, Du J, Liu M and Gao K 2005 Phys. Rev. A 72 052109 [9] Schwindt P D D, Kwiat P G and Englert B G 1999 Phys. Rev. A 60 4285 [10] Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406 [11] Tang J S, Li Y Y, Xu X Y, Xiang G Y, Li C F and Guo G C 2012 Nat. Photon. 6 600 [12] Peruzzo A, Shadbolt P, Brunner N, Popescu S and O’Brien J L 2012 Science 2012 634 [13] Kaiser F, Coudreau T, Milman P, Ostrowsky D B and Tanzilli S 2012 Science 2012 637 [14] Tang J S, Li Y L, Li C F and Guo G C 2013 Phys. Rev. A 88 014103 [15] Wang K, Xu Q, Zhu S and Ma X S 2019 Nat. Photon. 13 872 [16] Dürr S 2001 Phys. Rev. A 64 042113 [17] Paul T and Qureshi T 2017 Phys. Rev. A 95 042110 [18] Mei M and Weitz M 2001 Phys. Rev. Lett. 86 559 [19] Luis A 2001 J. Phys. A: Math. Gen. 34 8597 [20] Bimonte G and Musto R 2003 J. Phys. A: Math. Gen. 36 11481 [21] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [22] Siddiqui M A and Qureshi T 2015 Theor. Exp. Phys. 2015 083A02 [23] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118 [24] Jia A A, Yang J, Yan S H, Hu Q Q, Luo Y K and Zhu S Y 2015 Chin. Phys. B 24 080302 [25] Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406 [26] Bagan E, Calsamiglia J, Bergou J A and Hillery M 2018 Phys. Rev. Lett. 120 050402 [27] Roy P and Qureshi T 2019 Phys. Scr. 94 095004 [28] Mishra S, Venugopalan A and Qureshi T 2019 Phys. Rev. A 100 042122 [29] Bagan E, Bergou J A and Hillery M 2020 Phys. Rev. A 102 022224 [30] Qureshi T 2019 Phys. Rev. A 100 042105 [31] Ivanovic I D 1987 Phys. Lett. A 123 257 [32] Dieks D 1988 Phys. Lett. A 126 303 [33] Peres A 1988 Phys. Lett. A 128 19 [34] Jaeger G and Shimony A 1995 Phys. Lett. A 197 83 [35] Shor P W 1997 SIAM J. Comput. 26 1484 [36] Li L, Liu N L and Yu S X 2012 Phys. Rev. A 85 054101 [37] Born M and Wolf E 1965 Principles of Optic, 3rd ed (New York: Pergamon) [38] Barnett S M and Croke S 2009 Adv. Opt. Photon. 1 238 [39] Englert B G, Kaszlikowski D, Kwek L C and Chee W H 2008 Int. J. Quantum Inform. 6 129 [40] Żukowski M, Zeilinger A and Horne M A 1997 Phys. Rev. A 55 2564 [41] Vourdas A and Dunningham J A 2005 Phys. Rev. A 71 013809 [42] Su Z E, Li Y, Rohde P P, Huang H L, Wang X L, Li L, Liu N L, Dowling J P, Lu C Y and Pan J W 2017 Phys. Rev. Lett. 119 080502 [43] Reck M, Zeilinger A, Bernstein H J and Bertani P 1994 Phys. Rev. Lett. 73 58 [44] Clements W R, Humphreys P C, Metcalf B J, Kolthammer W S and Walmsley I A 2016 Optica 3 1460 [45] Jia A A, Huang J H, Zhang T C and Zhu S Y 2014 Phys. Rev. A 89 042103 [46] Wang Z H, Tian Y L, Yang C, Zhang P F, Li G and Zhang T C 2016 Phys. Rev. A 94 062124 [47] Wang D Y, Wu J J, Ding J F, Liu Y W, Huang A Q and Yang X J 2021 Entropy 23 122 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|