Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117601    DOI: 10.1088/1674-1056/ac7bfd

A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer

Yu He(贺羽)1,2, Runqi Kang(康润琪)1,2, Zhifu Shi(石致富)3, Xing Rong(荣星)1,2,†, and Jiangfeng Du(杜江峰)1,2,‡
1 CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Chinainstru&Quantumtech(Hefei) Co., Ltd, Hefei 230031, China
Abstract  We report a new design of resonant cavity for a W-band electron paramagnetic resonance (EPR) spectrometer. An improved coupling-adjusting mechanism, which is robust, compact, and suits with both solenoid-type and split-pair magnets, is utilized on the cavity, and thus enables both continuous-wave (CW) and pulsed EPR experiments. It is achieved by a tiny metal cylinder in the iris. The coupling coefficient can be varied from 0.2 to 17.9. Furthermore, two pistons at each end of the cavity allow for adjustment of the resonant frequency. A horizontal TE011 geometry also makes the cavity compatible with the two frequently used types of magnets. The coupling-varying ability has been demonstrated by reflection coefficient (S11) measurement. CW and pulsed EPR experiments have been conducted. The performance data indicates a prospect of wide applications of the cavity in fields of physics, chemistry and biology.
Keywords:  electron paramagnetic resonance      W-band      microwave cavity      coupling coefficient  
Received:  15 April 2022      Revised:  07 June 2022      Accepted manuscript online:  27 June 2022
PACS:  76.30.-v (Electron paramagnetic resonance and relaxation)  
  33.35.+r (Electron resonance and relaxation)  
  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the Chinese Academy of Sciences (Grant Nos. XDC07000000 and GJJSTD20200001). X. R. thanks the Youth Innovation Promotion Association of Chinese Academy of Sciences for the support.
Corresponding Authors:  Xing Rong, Jiangfeng Du     E-mail:;

Cite this article: 

Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰) A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer 2022 Chin. Phys. B 31 117601

[1] M?bius K, Savitsky A, Schnegg A, Plato M and Fuchs M 2005 Phys. Chem. Chem. Phys. 7 19
[2] Duss O, Yulikov M, Jeschke G and Allain F H T 2005 Phys. Chem. Chem. Phys. 5 3669
[3] Song L, Liu Z, Kaur P, Esquiaqui J M, Hunter R I, Hill S, Smith G M and Fanucci G E 2016 J. Magn. Reson. 265 188
[4] Chaudhuri P, Kataev V, Büchner B, Klauss H H, Kersting B and Meyer F 2009 Coord. Chem. Rev. 253 2261
[5] Roessler M M and Salvadori E 2018 Chem. Soc. Rev. 47 2534
[6] Du J, Rong X, Zhao N, Wang Y, Yang J and Liu R B 2009 Nature 461 1265
[7] Flower G, Bourhill J, Goryachev M and Tobar M E 2019 Phys. Dark Universe 25 100306
[8] Watanabe K, Nishijima G, Awaji S, Koyama K, Takahashi K, Kobayashi N and Kiyoshi T 2006 J. Phys.: Conf. Ser. 51 631
[9] Michael P, Yuri L and Michael S 2017 Supercond. Sci. Technol. 30 014007
[10] Zeng Z, Hu L, Ma Q, Jiang Y and Chen H 2019 Acta Phys. Sin. 68 084101 (in Chinese)
[11] Yu Y, Li X, Sun B and He K 2015 Chin. Phys. B 24 068702
[12] M?bius K and Savitsky A 2009 High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States (Cambridge: RSC Publishing)
[13] Qiu C, Nie X and Lu D 2021 Chin. Phys. B 30 048201
[14] Masashi O 2022 AAPPS Bull. 32 6
[15] Ewald M, Elmar L, Franz S and Georg K 2017 Front. Phys. 5 33
[16] Stoykov A, Scheuermann R, Sedlak K, Rodriguez J, Greuter U and Amato A 2012 Phys. Procedia 30 7
[17] Webb A 2004 Prog. Nucl. Magn. Reson. Spectrosc. 83 1
[18] Rong X 2011 The development and application of the pulsed electron paramagnetic resonance spectrometer PhD Thesis (Hefei: University of Science and Technology of China) (in Chinese)
[19] Pfenninger S, Froncisz W, Forrer J, Luglio J and Hyde J S 1995 Rev. Sci. Instrum. 66 4857
[20] Mett R R, Sidabras J W and Hyde J S 2005 Appl. Magn. Reson. 35 285
[21] Savitsky A, Grishin Yu, Rakhmatullin R, Reijerse E and Lubitz W 2013 Rev. Sci. Instrum. 84 014704
[22] Burghaus O, Rohrer M, G?tzinger T, Plato M and M?bius K 1992 Meas. Sci. Technol. 3 165
[23] Disselhorst J A J M, Vandermeer H, Poluektov O G and Schmidt J 1995 J. Magn. Reson. Ser A 115 183
[24] Gromov I, Krymov V, Manikandan P, Arieli D and Goldfarb D 1999 J. Magn. Reson. 139 8
[25] Kumar R 2009 Nucl. Instrum. Methods. Phys. Res. A 600 534
[26] Gromov I, Forrer J and Schweiger A 2006 Rev. Sci. Instrum. 77 064704
[27] Shi Z, Mu S, Qin X, Dai Y, Rong X and Du J 2018 Rev. Sci. Instrum. 89 125104
[28] Goswami M, Chirila A, Rebreyend C and Bruin B 2015 Top. Catal. 58 719
[29] Kempe S, Metz H and M?der K 2010 Eur. J. Pharm. Biopharm. 74 19
[30] Indrajeet M, Ram K and Sanjay M 2012 Chin. Phys. Lett. 29 037601
[31] Morton J J, Tyryshkin A M, Ardavan A, Porfyrakis K, Lyon S and Briggs G A D 2005 Phys. Rev. Lett. 95 200501
[32] Guo X, Dong L, Guo Y, Shan X, Zhao J and Lu X 2013 Chin. Phys. Lett. 30 017601
[33] Schweiger A, Jeschke G and Savitsky A 2005 Principles of Pulse Electron Paramagnetic Resonance (Oxford: Oxford University Press)
[34] Platas-Iglesias C, Esteban-Gomez D, Helm L and Regueiro-Figueroa M 2016 J. Phys. Chem. A 120 6467
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[3] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[4] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[5] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[6] Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications
L Haritha, K Chandra Sekhar, R Nagaraju, G Ramadevudu, Vasanth G Sathe, Md. Shareefuddin. Chin. Phys. B, 2019, 28(3): 038101.
[7] Experimental demonstration of narrow-band rugate minus filters using rapidly alternating deposition technology
Ying Zhang(章瑛), Yan-Zhi Wang(王胭脂), Jiao-Ling Zhao(赵娇玲), Jian-Da Shao(邵建达), Shuang-Chen Ruan(阮双琛). Chin. Phys. B, 2018, 27(5): 054217.
[8] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[9] Stoney formula for piezoelectric film/elastic substrate system
Wang-Min Zhou(周旺民), Wang-Jun Li(李望君), Sheng-Yun Hong(洪圣运), Jie Jin(金杰), Shu-Yuan Yin(尹姝媛). Chin. Phys. B, 2017, 26(3): 037701.
[10] Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss
Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2015, 24(6): 068702.
[11] Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
Liu Chang (刘畅), Wang Yan-Hui (王延辉). Chin. Phys. B, 2015, 24(1): 010602.
[12] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
[13] A staggered double vane circuit for a W-band traveling-wave tube amplifier
Lai Jian-Qiang(赖剑强), Wei Yan-Yu(魏彦玉), Liu Yang(刘洋), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068403.
[14] Effect of local structure on electron paramagnetic resonance spectra for trigonal [Cr(H2O)6]3+coordination complex in the sulfate alums series: a ligand field theory study
Li Yan-Fang(李艳芳), Kuang Xiao-Yu(邝小渝), Gao Ming-Liang(高明亮), Zhao Ya-Ru(赵亚儒), and Wang Huai-Qian(王怀谦). Chin. Phys. B, 2009, 18(7): 2967-2974.
[15] Observation of the near transform-limited high-resolution tunable far-ultraviolet light
Zheng Huai-Bin(郑淮斌), Zhang Yan-Peng(张彦鹏), Nie Zhi-Qiang(聂志强), Li Chang-Biao(李昌彪), Song Jian-Ping(宋建平), Li Chuang-She(李创社), and Lu Ke-Qing(卢克清). Chin. Phys. B, 2009, 18(7): 2729-2733.
No Suggested Reading articles found!