Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 014201    DOI: 10.1088/1674-1056/27/1/014201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Birefringence via Doppler broadening and prevention of information hacking

Humayun Khan, Muhammad Haneef, Bakhtawar
Laborotary of Theoretical Physics, Department of Physics, Hazara University Mansehra, KP, Pakistan
Abstract  We propose a new scheme for the coherent control of birefringent light pulses propagation in a four-level atomic medium. We modify the splitting of a light pulse by controlling the electric and magnetic responses. The Doppler broadening effect is also noted on the propagation of the birefringent pulses. The dispersions of the birefringence beams are oppositely manipulated for delay and advancement of time at a Doppler width of 10γ. A time gap is created between the birefringence beams, which protects from hacking of information. The time gap is then closed to restore the pulse into the original form by a reverse manipulation of the dispersion of the birefringence beams, i.e., introducing another medium whose transfer function is the complex conjugate of that of the original medium. The results are useful for secure communication technology.
Keywords:  birefringence      Doppler broadening      time gap      hacking  
Received:  03 August 2017      Revised:  12 September 2017      Accepted manuscript online: 
PACS:  42.25.Lc (Birefringence)  
  42.25.Kb (Coherence)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  Muhammad Haneef     E-mail:  haneef.theoretician@gmail.com

Cite this article: 

Humayun Khan, Muhammad Haneef, Bakhtawar Birefringence via Doppler broadening and prevention of information hacking 2018 Chin. Phys. B 27 014201

[1] Loudon R 2000 The Quantum Theory of Light (3rd Edn.) (Oxford: Oxford University Press)
[2] Humayun K and Haneef M 2017 Canadian Journal of Physics (Accepted)
[3] Bacha B A, Ghafor F, Ahmad I and Rahman A 2014 Laser physics 24 055401
[4] Hong X M, Wan S B, Hong W L and Chun C 2016 Chin. Phys. B 25 080309
[5] Jin H L, Hai D R, Shi X P, Zhao L C and Feng L X 2016 Chin. Phys. B 25 124208
[6] Thommen Q and Mandel P 2006 Phys. Rev. Lett. 96 053601
[7] Orth P P, Henning R, Keitel C H and Evers J 2013 New. J. Phys. 15 1
[8] Humayun K and Haneef M 2017 Laser Phys. 27 055201
[9] Kastel J, Fleischhauer M, Susanne, Yelin F and Walsworth R L 2007 Phys. Rev. lett. 99 073602
[10] Ghosh A and Fischer P 2006 Phys. Rev. Lett. 97 173002
[11] Jaggard D L, Mickelson A R and Papas C H 1979 Appl. Phys. 18 211
[12] McCall M W, Favaro A, Kinsler P and Boardman A 2011 J. Opt. 13 024003
[13] Fridman M, Farsi A, Okawachi Y and Gaeta A L 2012 Nature 481 62
[14] Leonhardt U 2006 Science 312 1777
[15] Service R F and Cho A 2010 Science 330 1622
[16] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[17] Shalaev V M 2008 Science 322 384
[18] Born, Max and Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Edn.) (Cambridge: Cambridge University Press)
[19] Elert and Glenn 2007 The Physics Hypertextbook (Refraction hypertextbook.com)
[20] Sharma and Kailash K 2006 Optics: Principles and Applications (Burlington: Academic Press)
[21] McCall M 2013 Contemp. Phys. 54 273
[22] Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett. 74 2447
[23] Jabar M S A, Bacha B A and Ahmad I 2016 Chin. Phys. B 25 084205
[24] Kash M M and Scully 1999 Phys. Rev. Lett. 82 5229
[25] Agarwal G S and Dey T N 2003 Phys. Rev. A 68 063816
[26] Kuang S, Du P and Gang R 2008 Opt. Express 16 11604
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[3] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[4] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[5] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[6] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[7] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[8] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
[9] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[10] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[11] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[12] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[13] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[14] Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义). Chin. Phys. B, 2017, 26(5): 057802.
[15] Autler-Townes spectroscopy of high-lying state by phase conjugate six-wave mixing
Jin-Hai Bai(白金海), Jian-Jun Li(李建军), Ling-An Wu(吴令安), Pan-Ming Fu(傅盘铭), Ru-Quan Wang(王如泉), Zhan-Chun Zuo(左战春). Chin. Phys. B, 2017, 26(4): 044204.
No Suggested Reading articles found!