Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020601    DOI: 10.1088/1674-1056/aca14e
GENERAL Prev   Next  

Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition

Ang Zhang(张昂)1,2, Congcong Tian(田聪聪)1,2, Qiang Zhu(朱强)1, Bing Wang(王兵)1, Dezhi Xiong(熊德智)1, Zhuanxian Xiong(熊转贤)1,†, Lingxiang He(贺凌翔)1,‡, and Baolong Lyu(吕宝龙)1
1 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We present a precise measurement of $^{171}$Yb magnetic constants for $^{1}S_{0}$-$^{3}P_{0}$ clock transition. The background magnetic field is firstly compensated to $< 1$ $\rm{mGs}$ (1 ${\rm Gs}=10^{-4}$ T) through measuring the splitting of two $ \pi $ transitins of $^{171}$Yb clock transition at different compensation coils currents. Then, the splitting ratios of the $ \pi $ and $ \sigma $ components of $^{171}$Yb clock transition at different bias magnetic fields are measured, and the first-order Zeeman coefficient is determined to be $\alpha = 199.49(5)$ $\rm{Hz/Gs}$. The second-order Zeeman shifts at various bias magnetic fields are also measured through interleaved self-comparison in which the bias magnetic fields are modulated between high and low values. The second-order Zeeman coefficient is fitted to be $ \beta = -6.09(3)$ $\rm{Hz/mT^{2}}$, which is consistent with the result of NIST group.
Keywords:  optical lattice clock      ytterbium atoms      Zeeman effects      magnetic constants  
Received:  12 October 2022      Revised:  07 November 2022      Accepted manuscript online:  09 November 2022
PACS:  06.30.Ft (Time and frequency)  
  37.10.Jk (Atoms in optical lattices)  
  32.70.Jz (Line shapes, widths, and shifts)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304402), the National Natural Science Foundation of China (Grant Nos. U20A2075 and 11803072), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100).
Corresponding Authors:  Zhuanxian Xiong, Lingxiang He     E-mail:;

Cite this article: 

Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙) Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition 2023 Chin. Phys. B 32 020601

[1] Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W and Ludlow A D 2017 Nat. Photon. 11 48
[2] McGrew W F, Zhang X, Fasano R J, Schaffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[3] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[4] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[5] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[6] Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M and Gao K 2022 Phys. Rev. Appl. 17 034041
[7] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[8] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[9] Brewer S, Chen J, Hankin A, Clements E, Chou C, Wineland D, Hume D and Leibrandt D 2019 Phys. Rev. Lett. 123 033201
[10] Lodewyck J, Bilicki S, Bookjans E, Robyr J L, Shi C, Vallet G, Le Targat R, Nicolodi D, Le Coq Y, Guéna J, Abgrall M, Rosenbusch P and Bize S 2016 Metrologia 53 1123
[11] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[12] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photon. 14 441
[13] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420
[14] Zheng X, Dolde J, Lochab V, Merriman B N, Li H and Kolkowitz S 2022 Nature 602 425
[15] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[16] Kennedy C J, Oelker E, Robinson J M, Bothwell T, Kedar D, Milner W R, Marti G E, Derevianko A and Ye J 2020 Phys. Rev. Lett. 125 201302
[17] Liu H, Zhang X, Jiang K, Wang J, Zhu Q, ZXXiong, He L and Lyu B 2017 Chin. Phys. Lett. 34 020601
[18] Xiong D, Zhu Q, Wang J, Zhang A, Tian C, Wang B, He L, Xiong Z and Lyu B 2021 Metrologia 58 035005
[19] Zhang A, Xiong Z, Chen X, Jiang Y, Wang J, Tian C, Zhu Q, Wang B, Xiong D, He L, Ma L and Lyu B 2022 Metrologia 59 065009
[20] Lemke N D 2012 Optical lattice clock with spin-1/2 ytterbium atoms, Ph. D. Dissertation (University of Colorado at Boulder) p. 57
[21] Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510
[22] Olschewski L and Otten E W 1967 Zeitschrift für Physik 200 224
[23] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P 2015 Rev. Mod. Phys. 87 637
[24] Taichenachev A V, Yudin V I, Oates C W, Hoyt C W, Barber Z W and Hollberg L 2006 Phys. Rev. Lett. 96 083001
[25] Lemke N D, Ludlow A D, Barber Z W, Fortier T M, Diddams S A, Jiang Y, Jefferts S R, Heavner T P, Parker T E and Oates C W 2009 Phys. Rev. Lett. 103 063001
[26] Gao Q, Zhou M, Han C, Li S, Zhang S, Yao Y, Li B, Qiao H, Ai D, Lou G, Zhang M, Jiang Y, Bi Z, Ma L and Xu X 2018 Sci. Rep. 8 8022
[27] Kobayashi T, Akamatsu D, Hisai Y, Tanabe T, Inaba H, Suzuyama T, Hong F L, Hosaka K and Yasuda M 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 2449
[28] Angel J R P and Sandars P G H 1968 Proc. R. Soc. A 305 125
[1] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[2] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[3] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[4] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[5] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[6] Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice
Chen Ning (陈宁), Zhou Min (周敏), Chen Hai-Qin (陈海琴), Fang Su (方苏), Huang Liang-Yu (黄良玉), Zhang Xiao-Hang (张晓航), Gao Qi (高琪), Jiang Yan-Yi (蒋燕义), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生), Xu Xin-Ye (徐信业). Chin. Phys. B, 2013, 22(9): 090601.
[7] Experiments on trapping ytterbium atoms in optical lattices
Zhou Min (周敏), Chen Ning (陈宁), Zhang Xiao-Hang (张晓航), Huang Liang-Yu (黄良玉), Yao Mao-Fei (姚茂飞), Tian Jie (田洁), Gao Qi (高琪), Jiang Hai-Ling (蒋海灵), Tang Hai-Yao (唐海瑶), Xu Xin-Ye (徐信业). Chin. Phys. B, 2013, 22(10): 103701.
No Suggested Reading articles found!