Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 024701    DOI: 10.1088/1674-1056/ab5f00
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering

Bo Yan(闫博)1,2,3, Li Chen(陈力)1,2, Meng Li(李猛)1,2, Shuang Chen(陈爽)1,2, Cheng Gong(龚诚)2, Fu-Rong Yang(杨富荣)1,2, Yun-Gang Wu(吴运刚)1,2, Jiang-Ning Zhou(周江宁)1,2, Jin-He Mu(母金河)1,2
1 Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2 Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
3 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Laminar methane/air premixed flames at different pressures in a newly developed high-pressure laminar burner are studied through Cantera simulation and filtered Rayleigh scattering (FRS). Different gas component fractions are obtained through the detailed numerical simulations. And this approach can be used to correct the FRS images of large variations in a Rayleigh cross section in different flame regimes. The temperature distribution above the flat burner is then presented without stray light interference from soot and wall reflection. Results also show that the extent of agreement with the single point measurement by the thermocouple is <6%. Finally, this study concludes that the relative uncertainty of the presented filtered Rayleigh scattering diagnostics is estimated to be below 10% in single-shot imaging.
Keywords:  filtered Rayleigh scattering      high-pressure combustion simulator      temperature measurement  
Received:  28 July 2019      Revised:  22 December 2019      Accepted manuscript online: 
PACS:  47.80.Fg (Pressure and temperature measurements)  
  47.70.Pq (Flames; combustion)  
  47.80.Jk (Flow visualization and imaging)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91641118) and the Fenglei Youth Innovation Fund of China Aerodynamics and Research Development Center, China (Grant Nos. FLYIF20160017 and PJD20180131).
Corresponding Authors:  Shuang Chen     E-mail:  chenshuang827@gmail.com

Cite this article: 

Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河) Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering 2020 Chin. Phys. B 29 024701

[1] Most D and Leipertz A 2001 Appl. Opt. 40 5379
[2] Zetterberg J, Li Z, Afzelius M and Aldén M 2008 Appl. Spectrosc. 62 778
[3] Liu J R, Hu Z Y and Zhang Z R 2011 Opt. Percision Eng. 19 284
[4] Hu S, Gao J, Gong C, Zhou Y, Bai X S, Li Z S and Alden M 2018 Appl. Energy 227 149
[5] Fourguette D C, Zurni R M and Long M B 1986 Combust. Sci. Technol. 44 307
[6] Peterson B, Baum E, Böhm B, Sick V and Dreizler A 2013 Proceedings of the Combustion Institute 34 3653
[7] Mcmillin B K, Palmer J L, Seitzman J M and Hanson R 1993 31th Aiaa Aerospace Sciences Meeting and Exhibit, January 11-14, Reno, Nv, USA, p. 0044
[8] Seitzman J M, Palmer J L and Antonio A L 1993 31th Aiaa Aerospace Sciences Meeting and Exhibi, January 11-14, Reno, Nv, USA, p. 0802
[9] Elliot G S and Glumac N 1999 37th Aiaa Aerospace Sciences Meeting and Exhibit, January 11-14, Reno, Nv, USA, p. 0643
[10] Doll U, Fischer M, Stockhausen G and Willett C 2012 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, July 9-12, Lisbon, Portugal
[11] Doll U, Stockhausen G and Willert C 2017 Opt. Lett. 42 3773
[12] Schroll M, Doll U, Stockhausen G, Meier U, Willert C, Chris H, Christoph B and Bagchi I 2017 J. Eng. Gas. Turb. Power 139 011503
[13] Sean P K, Robert W S, Steven J B and Thomas 2005 Appl. Opt. 44 1548
[14] Elliott G S, Glumac N, Carter C D and Nejad A S 1997 Combust. Sci. Technol. 125 351
[15] Vieitez M O, van Duijn E J, Ubachs W, Witschas B, Meijer A, de Wijn A S, Dam N J and Water W 2010 Phys. Rev. A 82 043836
[16] Miles R B, Lempert W R and Forkey J N 2001 Meas. Sci. Thchnol. 12 33
[17] Forkey J 1996 "Development and Demonstration of Filtered Rayleigh Scattering: a Laser Based Flow Diagnostic for Planar Measurement of Velocity, Temperature and Pressure", Ph. D. Dissertation (New Jersey: Princeton University)
[18] Pitz R, Cattolica R, Robben F and Talbot L 1976 Combust. Flame 27 313
[19] Elliott G S, Glumac N and Carter C D 2001 Meas. Sci. Thcnnol. 12 452
[20] Kearney S P, Schefer R W, Beresh S J and Grasser T W 2005 Appl. Opt. 44 1548
[21] Sutton G, Levick A, Edwards G and Greenhalgh D 2006 Combust. Flame 147 39
[22] Tenti G, Boley C D and Desai R C 1974 Can. J. Phys. 52 285
[23] Pan X, Shneider M N and Miles R B 2004 Phys. Rev. A 69 33814
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[3] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[4] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[5] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[6] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[7] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
No Suggested Reading articles found!