CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets |
Zhi-Yu He(贺芝宇)1, Hua Shu(舒桦)1, Xiu-Guang Huang(黄秀光)1,2, Qi-Li Zhang(张其黎)3, Guo Jia(贾果)1, Fan Zhang(张帆)1, Yu-Chun Tu(涂昱淳)1, Jun-Yue Wang(王寯越)4, Jun-Jian Ye(叶君建)1, Zhi-Yong Xie(谢志勇)1, Zhi-Heng Fang(方智恒)1, Wen-Bing Pei(裴文兵)1,2, Si-Zu Fu(傅思祖)1,2 |
1 Shanghai Institute of Laser Plasma, CAEP, P. O. Box 800-229, Shanghai 201800, China;
2 IFSA Collaborative Innovation Center, Shanghai Jiaotong University, Shanghai 200240, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4 Center for High Pressure Science and Technology Advance Research, Beijing 100094, China |
|
|
Abstract Using a combination of static precompression and laser-driven shock compression, shock temperature and reflectivity of H2O have been measured up to 350 GPa and 2.1×104 K. Here, two calibration standards were applied to enhance temperature measurement reliability. Additionally, in temperature calculations, the discrepancy in reflectivity between active probe beam wavelength and self-emission wavelength has been taken into account to improve the data's precision. Precompressed water's temperature-pressure data are in very good agreement with our quantum molecular dynamics model, suggesting a superionic conductor of H2O in the icy planets' deep interior. A sluggish slope gradually approaching Dulong-Petit limit at high temperature was found at a specific heat capacity. Also, high reflectivity and conductivity were observed at the same state. By analyzing the temperature-pressure diagram, reflectivity, conductivity and specific heat comprehensively at conditions simulating the interior of planets in this work, we found that as the pressure rises, a change in ionization appears; it is supposedly attributed to energetics of bond-breaking in the H2O as it transforms from a bonded molecular fluid to an ionic state. Such molecular dissociation in H2O is associated with the conducting transition because the dissociated hydrogen atoms contribute to electrical properties.
|
Received: 23 July 2018
Revised: 20 September 2018
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
51.30.+i
|
(Thermodynamic properties, equations of state)
|
|
64.30.-t
|
(Equations of state of specific substances)
|
|
52.25.Kn
|
(Thermodynamics of plasmas)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200) and the Science Challenge Project (Grant No. TZ2016001). |
Corresponding Authors:
Fan Zhang
E-mail: innocentman001@163.com
|
Cite this article:
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖) Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets 2018 Chin. Phys. B 27 126202
|
[1] |
Lara L M, Lorenz R D and Rodrigo R 1994 Planet. & Space Sci. 42 5
|
[2] |
Meier R, Smith B A, Owen T C and Terrile R J 2000 Icarus 145 462
|
[3] |
Surhone L M, Timpledon M T, Marseken S F and Nebula D 2010 Astronomical & Astrophysical Transactions, the Journal of Eurasian Astronomical Society 20 197
|
[4] |
Hubbard W B 1997 Science 275 1279
|
[5] |
Lyon S P and Johnson J D 1992 Los Alamos Tachnical Report No. LA-UR-92-3407
|
[6] |
Ree F H 1976 Lawrence Livermore Laboratory Technical Report No. UCRL-52190
|
[7] |
French M, Mattsson T R, Nettelmann N and Redmer R 2009 Phys. Rev. B 79 054107
|
[8] |
French M and Redmer R 2009 J. Phys.: Condens. Matter 21 375101
|
[9] |
French M, Desjarlais M P and Redmer R 2016 Phys. Rev. E 93 022140
|
[10] |
Knudson M D, Desjarlais M P, Lemke R W, Mattsson T R, French M, Nettelmann N and Redmer R 2012 Phys. Rev. Lett. 108 091102
|
[11] |
Kimura T, Ozaki N, Sano T, Okuchi T, Sano T, Shimizu K, Miyanishi K, Terai T, Kakeshita T and Sakawa Y 2015 J. Chem. Phys. 142 109
|
[12] |
Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C and Eggert J H 2018 Nat. Phys. 14 297
|
[13] |
Kimura T, Kuwayama Y and Yagi T 2014 J. Chem. Phys. 140 109
|
[14] |
Stanley S and Bloxham J 2004 Nature 428 151
|
[15] |
Stanley S and Bloxham J 2006 Icarus 184 556
|
[16] |
Lee K K, Benedetti L R, Jeanloz R, Celliers P M, Eggert J H, Hicks D G, Moon S J, Mackinnon A, Da S L and Bradley D K 2006 J. Chem. Phys. 125 1
|
[17] |
Schwager B, Chudinovskikh L, Gavriliuk A and Boehler R 2004 J. Phys.: Condens. Matter 16 S1177
|
[18] |
Schwager B and Boehler R 2008 High Press. Res. 28 431
|
[19] |
Loubeyre P, Celliers P M, Hicks D G, Henry E, Dewaele A, Pasley J, Eggert J, Koenig M, Occelli F and Lee K M 2004 High Press. Res. 24 25
|
[20] |
Shu H, Tu Y C, Wang J Y, Jia G, Ye J J, Deng W, Shu H Y, Yang Y P, Du X Y, Xie Z Y, He Z Y, Fang Z H, Hua N, Huang X G, Pei W B and Fu S Z 2018 Acta Phys. Sin. 67 064101 (in Chinese)
|
[21] |
Chen W, Wang S, Mao C, Chen B and Aifen X U 1991 Acta Opt. Sin. 11 829 (in Chinese)
|
[22] |
Deng X, Liang X, Chen Z, Yu W and Ma R 1986 Appl. Opt. 25 377
|
[23] |
Fu S, Gu Y, Wu J and Wang S 1995 Phys. Plasmas 2 3461
|
[24] |
Shu H, Fu S, Huang X, Wu J, Xie Z, Zhang F, Ye J, Jia G and Zhou H 2014 Phys. Plasmas 21 2162
|
[25] |
Zhiyu H, Huazhen Z, Xiuguang H, Guo J, Hua S, Zhiheng F, Junjian Y and Zhiyong X 2016 High Power Laser Part. Beams 28 28042002
|
[26] |
He Z Y, Jia G, Zhang F, Luo K, Huang X G, Shu H, Fang Z H, Ye J J, Xie Z Y, Xia M and Fu S Z 2018 Eur. Phys. J. D 72 3
|
[27] |
Shu H, Fu S Z, Huang X G, Fang Z H, Wang T, Ye J J, Xie Z Y, Zhou H Z and Long T 2012 Eur. Phys. J. D 66 1
|
[28] |
Celliers P M, Collins G W, Hicks D G and Eggert J H 2005 J. Appl. Phys. 98 113529
|
[29] |
Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276
|
[30] |
Shimizu H, Nabetani T, Nishiba T and Sasaki S 1996 Phys. Rev. B 53 6107
|
[31] |
Hua Shu J W, Yuchun Tu, Xiuguang Huang, Zhiyu He, Guo Jia, Junjian Ye, Zhiyong Xie, Fan Zhang, Sizu Fu (unpublished)
|
[32] |
Spaulding D K 2010 Laser-Driven Shock Compression Studies of Planetary Compositions (Berkeley: Graduate Division of the University of California)
|
[33] |
Glukhodedov V D and Kirshanov S I 1999 J. Exp. Theor. Phys. 89 292
|
[34] |
Kormer S B 1968 Soviet Phys. Usp. 11 229
|
[35] |
Zhou X, Nellis W J, Li J, Li J, Zhao W, Liu X, Cao X, Liu Q, Xue T and Wu Q 2015 J. Appl. Phys. 118 043524
|
[36] |
Miller J E, Boehly T R, Melchior A, Meyerhofer D D, Celliers P M, Eggert J H, Hicks D G, Sorce C M, Oertel J A and Emmel P M 2007 Rev. Sci. Instrum. 78 034903
|
[37] |
Kerley G I 1999 Equations of state for composite materials (Albuquerque: Kerley) p. 1
|
[38] |
Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M and Parrinello M 1999 Science 283 44
|
[39] |
Perdew J P, Burke K, Ernzerhof M, Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Hoover G 2007 Mol. Simulation 33 13
|
[41] |
Shu H, Fu S Z, Huang X G, Ma M X, Wu J, Ye J J, He J H and Gu Y 2007 Eur. Phys. J. D 44 367
|
[42] |
Zhang H, Duan X X, Zhang C, Liu H, Zhang H G, Xue Q X, Ye Q, Wang Z B and Jiang G 2016 Chin. Phys. Lett. 33 086202
|
[43] |
Lyzenga G A, Ahrens T J, Nellis W J and Mitchell A C 1982 J. Chem. Phys. 76 6282
|
[44] |
Hicks D G, Boehly T R, Eggert J H, Miller J E, Celliers P M and Collins G W 2006 Phys. Rev. Lett. 97 025502
|
[45] |
Eggert J H, Hicks D G, Celliers P M, Bradley D K, Mcwilliams R S, Jeanloz R, Miller J E, Boehly T R and Collins G W 2010 Nat. Phys. 6 40
|
[46] |
Celliers P M, Collins G W, Hicks D G, Koenig M, Henry E, Benuzzimounaix A, Batani D, Bradley D K, Silva L B D and Wallace R J 2004 Phys. Plasmas 11 L41
|
[47] |
Hicks D G, Celliers P M, Collins G W, Eggert J H and Moon S J 2003 Phys. Rev. Lett. 91
|
[48] |
Huser G, Recoules V, Ozaki N, Sano T, Sakawa Y, Salin G, Albertazzi B, Miyanishi K and Kodama R 2015 Phys. Rev. E 92 063108
|
[49] |
Celliers P M, Loubeyre P, Eggert J H, Brygoo S, Mcwilliams R S, Hicks D G, Boehly T R, Jeanloz R and Collins W G 2010 Phys. Rev. Lett. 104 184503
|
[50] |
Ioffe A F and Regel A R 1960 Prog. Semicond. 4 237
|
[51] |
Williams F, Varma S P and Hillenius S 1976 J. Chem. Phys. 64 1549
|
[52] |
Chau R, Mitchell A C, Minich R W and Nellis W J 2001 J. Chem. Phys. 114 1361
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|