Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108102    DOI: 10.1088/1674-1056/ac6ee5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Accurate determination of anisotropic thermal conductivity for ultrathin composite film

Qiu-Hao Zhu(朱秋毫)1,2, Jing-Song Peng(彭景凇)3, Xiao Guo(郭潇)1,2,4, Ru-Xuan Zhang(张如轩)1, Lei Jiang(江雷)3, Qun-Feng Cheng(程群峰)3,†, and Wen-Jie Liang(梁文杰)1,2,4,‡
1. Beijing National Center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2. CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3. School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China;
4. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Highly anisotropic thermal conductive materials are of significance in thermal management applications. However, accurate determination of ultrathin composite thermal properties is a daunting task due to the tiny thermal conductance, severely hindering the further exploration of novel efficient thermal management materials, especially for size-confined environments. In this work, by utilizing a hybrid measuring method, we demonstrate an accurate determination of thermal properties for montmorillonite/reduced graphene oxide (MMT/rGO) composite film with a thickness range from 0.2 μ m to 2 μ m. The in-plane thermal conductivity measurement is realized by one-dimensional (1D) steady-state heat conduction approach while the cross-plane one is achieved via a modified 3ω method. As-measured thermal conductivity results are cross-checked with different methods and known materials, revealing the high measurement accuracy. A high anisotropic ratio of 60.5, independent of composite thickness, is observed in our measurements, further ensuring the negligible measurement error. Notably, our work develops an effective approach to the determination of ultrathin composite thermal conductivity, which may promote the development of ultrathin composites for potential thermal-related applications.
Keywords:  ultrathin      composite film      thermal conductivity      anisotropic ratio  
Received:  18 March 2022      Revised:  30 April 2022      Accepted manuscript online: 
PACS:  81.70.-q (Methods of materials testing and analysis)  
  68.65.Ac (Multilayers)  
  81.05.U- (Carbon/carbon-based materials)  
  65.40.G- (Other thermodynamical quantities)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0200800), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB07030100), the Sinopec Innovation Scheme (A-527), the National Key Research and Development Program of China (Grant No. 2021YFA0715700), and the National Science Fund for Distinguished Young Scholars, China (Grant No. 52125302).
Corresponding Authors:  Qun-Feng Cheng, Wen-Jie Liang     E-mail:  cheng@buaa.edu.cn;wjliang@iphy.ac.cn

Cite this article: 

Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰) Accurate determination of anisotropic thermal conductivity for ultrathin composite film 2022 Chin. Phys. B 31 108102

[1] Ball P 2012 Nature 492 174
[2] Chu S and Majumdar A 2012 Nature 488 294
[3] Prasher R 2006 Proc. IEEE 94 1571
[4] Renteria J D, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, Cocemasov A I, Nika D L and Balandin A A 2015 Adv. Funct. Mater. 25 4664
[5] Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F and Fu Q 2017 J. Mater. Chem. C 5 3748
[6] Ma M, Xu L, Qiao L, Chen S, Shi Y, He H and Wang X 2020 Chem. Eng. J. 392 123714
[7] Pan T W, Kuo W S and Tai N H 2017 Compos. Sci. Technol. 151 44
[8] Hu D, Gong W, Di J, Li D, Li R, Lu W, Gu B, Sun B and Li Q 2017 Carbon 118 659
[9] Zhao D, Qian X, Gu X, Jajja S A and Yang R 2016 J. Electron. Packag. 138 040802
[10] Yan H, Yan J and Zhao G 2019 Chin. Phys. B 28 114401
[11] Chen Q, Yan X, Wu L, Xiao Y, Wang S, Cheng G, Zheng R and Hao Q 2021 ACS Appl. Mater. Interfaces 13 5435
[12] Li Q, Ma W and Zhang X 2016 Int. J. Heat Mass Transfer 95 956
[13] Liu J, Wang H, Hu Y, Ma W and Zhang X 2015 Rev. Sci. Instrum. 86 014901
[14] Lee B, Lee J S, Kim S U, Kim K, Kwon O, Lee S, Kim J H and Lim D S 2009 J. Vac. Sci. Technol. B 27 2408
[15] Zhang Y F, Wang L, Heiderhoff R, Geinzer A, Wei B, Ji Y, Han X D, Balk L and Zhang Z 2012 Chin. Phys. B 21 016501
[16] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R and Thong J T 2014 Nat. Commun. 5 3689
[17] Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D and Shi L 2017 Adv. Mater. 29 1603756
[18] Takahashi C, Shirai T and Fuji M 2013 Mater. Chem. Phys. 141 657
[19] Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P and Bieloshapka I 2014 J. Electron Spectrosc. Relat. Phenom. 195 145
[20] Yu X, Zhang B, Zhao S, Kao Z, Yang S and Liu X 2018 ECS J. Solid State Sci. Technol. 7 M153
[21] Hsieh C T, Lee C E, Chen Y F, Chang J K and Teng H S 2015 Nanoscale 7 18663
[22] Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, Wang J, Li M, Ghasemi H, Huang X, Li X and Chen G 2019 Nat. Commun. 10 1771
[23] Zhuang Y, Zheng K, Cao X, Fan Q, Ye G, Lu J, Zhang J and Ma Y 2020 ACS Nano 14 11733
[24] Li L, Cao Y, Liu X, Wang J, Yang Y and Wang W 2020 ACS Appl. Mater. Interfaces 12 27350
[25] Song N, Jiao D, Cui S, Hou X, Ding P and Shi L 2017 ACS Appl. Mater. Interfaces 9 2924
[26] Song N, Jiao D, Ding P, Cui S, Tang S and Shi L 2016 J. Mater. Chem. C 4 305
[27] Tian X, Itkis M E, Bekyarova E B and Haddon R C 2013 Sci. Rep. 3 1710
[28] Qiu L, Zheng X, Yue P, Zhu J, Tang D, Dong Y and Peng Y 2015 Int. J. Therm. Sci. 89 185
[29] Zheng X, Yue P, Li S, Wang L, Yang X and Chen H 2018 Rev. Sci. Instrum. 89 084904
[30] Yamane T, Nagai N, Katayama S I and Todoki M 2002 J. Appl. Phys. 91 9772
[31] Lee S M and Cahill D G 1997 J. Appl. Phys. 81 2590
[32] Tiwari A, Boussois K, Ali B N, Smith D S and Blanchart P 2013 AIP Adv. 3 112129
[33] Gong J, Liu Z, Yu J, Dai D, Dai W, Du S, Li C, Jiang N, Zhan Z and Lin C T 2016 Composites Part A 87 290
[34] Ding P, Zhang J, Song N, Tang S, Liu Y and Shi L 2015 Compos. Sci. Technol. 109 25
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[10] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[11] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[12] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
No Suggested Reading articles found!