|
|
Real-time programmable coding metasurface antenna for multibeam switching and scanning |
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容)†, Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰) |
Information and Navigation College, Air Force Engineering University, Xi'an 710077, China |
|
|
Abstract Novel electromagnetic wave modulation by programmable dynamic metasurface promotes the device design freedom, while multibeam antennas have sparked tremendous interest in wireless communications. A programmable coding antenna based on active metasurface elements (AMSEs) is proposed in this study, allowing scanning and state switching of multiple beams in real time. To obtain the planar array phase distribution in quick response, the aperture field superposition and discretization procedures are investigated. Without the need for a massive algorithm or elaborate design, this electronically controlled antenna with integrated radiation and phase-shift functions can flexibly manipulate the scattering state of multiple beams under field-programmable gate array (FPGA) control. Simulation and experimental results show that the multiple directional beams dynamically generated in the metasurface upper half space have good radiation performance, with the main lobe directions closely matching the predesigned angles. This metasurface antenna has great potential for future applications in multitarget radar, satellite navigation, and reconfigurable intelligent metasurfaces.
|
Received: 27 April 2022
Revised: 27 April 2022
Accepted manuscript online: 13 July 2022
|
PACS:
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
Corresponding Authors:
Qiu-Rong Zheng
E-mail: zqr1620@sina.com
|
Cite this article:
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容)†, Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰) Real-time programmable coding metasurface antenna for multibeam switching and scanning 2022 Chin. Phys. B 31 090704
|
[1] Cui T J 2017 J. Opt. 19 084004 [2] Abdullah M and Koziel S 2022 IEEE Trans. Microwave Theory Tech. 70 264 [3] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P and Gao J 2021 IEEE Trans. Anten. Propag. 69 1239 [4] Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Nat. Photon. 7 948 [5] Qiu T S, Shi X, Wang J F, Li Y F, Qu S B, Cheng Q, Cui T J and Sui S 2019 Adv. Sci. 6 1900128 [6] Ergin T, Stenger N, Brenner P, Pendry J B and Wegener M 2010 Science 328 337 [7] Brongersma M L 2021 Nanophotonics 10 643 [8] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237 [9] Hosseininejad S E, Rouhi K, Neshat M, Cabellos-Aparicio A, Abadal S and Alarcon E 2019 IEEE Trans. Nanotechnol. 18 734 [10] Xu H X, Wang S J, Wang C H, Wang M Z, Wang Y Z and Peng Q 2022 IEEE Trans. Anten. Propag. 70 1895 [11] Pedross-Engel A, Arnitz D, Gollub J N, Yurduseven O, Trofatter K P, Imani M F, Sleasman T, Boyarsky M, Fu X J, Marks D L, Smith D R and Reynolds M S 2018 IEEE Trans. Comput. Imaging 4 184 [12] Ding G W, Chen K, Luo X Y, Qian G X, Zhao J M, Jiang T and Feng Y J 2020 Nanophotonics 9 2977 [13] Rajabalipanah H, Abdolali A and Rouhi K 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10 75 [14] Li R J, Liu H X, Xu P, Han J Q and Li L 2022 J. Phys. D:Appl. Phys. 55 225302 [15] Xu H J, Xu S H, Yang F and Li M K 2020 IEEE Anten. Wireless Propag. Lett. 19 1896 [16] Han J Q, Li L, Ma X J, Gao X H, Mu Y J, Liao G S, Luo Z J and Cui T J 2022 IEEE Trans. Ind. Electron. 69 8524 [17] Pan X T, Yang F, Xu S H and Li M K 2021 IEEE Trans. Anten. Propag. 69 173 [18] Zhang N, Chen K, Zheng Y L, Hu Q, Qu K, Zhao J M, Wang J and Feng Y J 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10 20 [19] Bai X D, Kong F W, Sun Y T, Wang G F, Qian J Y, Li X B, Cao A J, He C, Liang X L, Jin R H and Zhu W R 2020 Adv. Opt. Mater. 8 2000570 [20] Li S J, Li Y B, Zhang L, Luo Z J, Han B W, Li R Q, Cao X Y, Cheng Q and Cui T J 2021 Laser Photon. Rev. 15 2000449 [21] Luo J, Li L, Su J R, Ma R B, Han G R and Zhang W M 2021 IEEE Anten. Wireless Propag. Lett. 20 1582 [22] Wu R Y, Bao L, Wu L W and Cui T J 2020 Sci. China-Phys. Mech. Astron. 63 284211 [23] Nayeri P, Yang F and Elsherbeni A Z 2012 IEEE Trans. Anten. Propag. 60 1166 [24] Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T and Feng Y J 2021 Acta Phys. Sin. 70 178102 (in Chinese) [25] Wan X, Qi M Q, Chen T Y and Cui T J 2016 Sci. Rep. 6 20663 [26] Li W H, Qiu T S, Wang J F, Zheng L, Jing Y, Jia Y X, Wang H, Han Y J and Qu S B 2021 IEEE Trans. Anten. Propag. 69 296 [27] Huang J and Encinar J A 2008 Reflectarray Antennas (Hoboken:John Wiley and Sons) pp. 68-72 [28] Bodehou M, Martini E, Maci S, Huynen I and Craeye C 2020 IEEE Trans. Anten. Propag. 68 1273 [29] Jiang Z H, Kang L, Yue T W, Hong W and Werner D H 2020 IEEE Trans. Anten. Propag. 68 217 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|