INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Amplitude modulation excitation for cancellous bone evaluation using a portable ultrasonic backscatter instrumentation |
Boyi Li(李博艺)1, Chengcheng Liu(刘成成)1,†, Xin Liu(刘欣)1, Tho N. H. T. Tran1, Ying Li(李颖)2, Dan Li(李旦)2, Dongsheng Bi(毕东生)2, Duwei Liu(刘度为)2, and Dean Ta(他得安)1,2,3,‡ |
1 Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; 2 The Center for Biomedical Engineering, Fudan University, Shanghai 200433, China; 3 The State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China |
|
|
Abstract The ultrasonic backscatter (UB) has the advantage of non-invasively obtaining bone density and structure, expected to be an assessment tool for early diagnosis osteoporosis. All former UB measurements were based on exciting a short single-pulse and analyzing the ultrasonic signals backscattered in bone. This study aims to examine amplitude modulation (AM) ultrasonic excitation with UB measurements for predicting bone characteristics. The AM multiple lengths excitation and backscatter measurement (AM-UB) functions were integrated into a portable ultrasonic instrument for bone characterization. The apparent integrated backscatter coefficient in the AM excitation (AIBAM) was evaluated on the AM-UB instrumentation. The correlation coefficients of the AIBAM estimating volume fraction (BV/TV), structure model index (SMI), and bone mineral density (BMD) were then analyzed. Significant correlations (|R| = 0.82-0.93, p < 0.05) were observed between the AIBAM, BV/TV, SMI, and BMD. By growing the AM excitation length, the AIBAM values exhibit more stability both in 1.0-MHz and 3.5-MHz measurements. The recommendations in AM-UB measurement were that the avoided length (T1) should be lower than AM excitation length, and the analysis length (T2) should be enough long but not more than AM excitation length. The authors conducted an AM-UB measurement for cancellous bone characterization. Increasing the AM excitation length could substantially enhance AIBAM values stability with varying analyzed signals. The study suggests the portable AM-UB instrument with the integration of real-time analytics software that might provide a potential tool for osteoporosis early screening.
|
Received: 28 April 2022
Revised: 08 June 2022
Accepted manuscript online: 18 June 2022
|
PACS:
|
43.35.Cg
|
(Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)
|
|
43.35.Yb
|
(Ultrasonic instrumentation and measurement techniques)
|
|
87.63.St
|
(Bone densitometry)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104096, 12004079, 82127803, 11827808, and 61871263), the Shanghai Science and Technology Innovation Plan (Grant Nos. 20S31901300 and 19441903400), the Shanghai Rising-Star Program (Grant No. 21QC1400100), and the China Postdoctoral Science Foundation (Grant No. 2021M690709). |
Corresponding Authors:
Chengcheng Liu, Dean Ta
E-mail: chengchengliu@fudan.edu.cn;tda@fudan.edu.cn
|
Cite this article:
Boyi Li(李博艺), Chengcheng Liu(刘成成), Xin Liu(刘欣), Tho N. H. T. Tran, Ying Li(李颖), Dan Li(李旦), Dongsheng Bi(毕东生), Duwei Liu(刘度为), and Dean Ta(他得安) Amplitude modulation excitation for cancellous bone evaluation using a portable ultrasonic backscatter instrumentation 2022 Chin. Phys. B 31 114303
|
[1] Tsoi A K N, Ho L T F, Wu I X Y, Wong C H L, Ho R S T, Lim J Y Y, Mao C, Lee E K P and Chung V C H 2020 Bone 139 115541 [2] An H, Zhao J, Wang J, Li C, Jiang Z, Yao J, Zhang X and Wu J 2020 Medicine 99 e22734 [3] Paik J and Scott L J 2020 Drugs Aging 37 857 [4] Ward L M, Weber D R, Munns C F, Hogler W and Zemel B S 2020 Journal of Clinical Endocrinology & Metabolism 105 e2088 [5] Lorentzon M and Cummings S R 2015 Journal of Internal Medicine 277 650 [6] Cui Z Y, Meng X Y, Feng H, Zhuang S Y, Liu Z R, Zhu T J, Ye K F, Xing Y, Sun C, Zhou F and Tian Y 2019 Arch. Osteoporos. 15 2 [7] Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, Mccloskey E V, Jonsson B and Kanis J A 2013 Arch. Osteoporos. 8 2 [8] Aziziyeh R, Garcia Perlaza J, Saleem N, Kirazli Y, Akalin E, Mctavish R K, Duperrouzel C and Cameron C 2020 Arch. Osteoporos. 15 128 [9] Tamimi I, Cortes A R G, Sanchez-Siles J M, Ackerman J L, Gonzalez-Quevedo D, Garcia A, Yaghoubi F, Abdallah M N, Eimar H, Alsheghri A, Laurenti M, Al-Subaei A, Guerado E, Garcia-De-Quevedo D and Tamimi F 2020 Bone 140 115558 [10] Kim B Y, Kim H A, Jung J Y, Choi S T, Kim J M, Kim S H, Kwon S R, Suh C H and Kim S S 2019 J. Clin. Med. 8 918 [11] Siris E S, Chen Y T, Abbott T A, Barrett-Connor E, Miller P D, Wehren L E and Berger M L 2004 Archives of Internal Medicine 164 1108 [12] Seeman E, Melton L J, Ofallon W M and Riggs B L 1983 American Journal of Medicine 75 977 [13] Raisz L G 1988 New England Journal of Medicine 318 818 [14] Martini D, Rosi A, Angelino D and Passeri G 2021 International Journal of Food Sciences and Nutrition 72 418 [15] Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C, Falch J A, Johnell O, Khaw K T, Masaryk P, Pols H, Poor G, Reid D, Scheidt-Nave C, Weber K, Silman A J and Reeve J 1997 Osteoporosis Int. 7 175 [16] Lewiecki E M, Wright N C and Singer A J 2020 Osteoporosis Int. 31 2069 [17] Osterhoff G, Morgan E F, Shefelbine S J, Karim L, Mcnamara L M and Augat P 2016 Injury-Int. J. Care Inj. 47 S11 [18] Upadhyaya G K, Iyengar K, Jain V K and Vaishya R 2020 Journal of orthopaedics 21 287 [19] Girgis C M and Clifton-Bligh R J 2020 Osteoporosis Int. 31 1189 [20] Wenlei P, Yi S, Ting L, Renlong Y and Ping F 2015 IEEE Transactions on Instrumentation and Measurement 64 1204 [21] Ji H, Cui X, Gao Y and Ge X 2021 IEEE Transactions on Instrumentation and Measurement 70 9004810 [22] Pisani P, Greco A, Conversano F, Renna M D, Casciaro E, Quarta L, Costanza D, Muratore M and Casciaro S 2017 Measurement 101 243 [23] Kim M G, Yu K, Niu X and He B 2021 IEEE Transactions on Instrumentation and Measurement 70 9600509 [24] Demi L, Egan T and Muller M 2020 Appl. Sci. 10 462 [25] Wear K A 2020 IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 67 454 [26] Wear K A 2020 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 68 358 [27] Wear K A, Nagaraja S, Dreher M L and Gibson S L 2012 J. Acoust. Soc. Am. 131 1605 [28] Wear K A 2000 Ultrasound in Medicine & Biology 26 1370 [29] Wear K A 2008 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 55 2418 [30] Wear K A and Garra B S 1998 Ultrasound in Medicine & Biology 24 689 [31] Matsukawa M 2019 Jpn. J. Appl. Phys. 58 SG0802 [32] Pereira D, Fernandes J and Belanger P 2020 IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 67 910 [33] Bai L, Xu K, Li D, Ta D, Le L H and Wang W 2018 Journal of Biomechanics 77 83 [34] Okumura S, Vu-Hieu N, Taki H, Haiat G, Naili S and Sato T 2018 Applied Sciences-Basel 8 652 [35] Abid A, Pereira D, Fernandes J C and Belanger P 2017 Acta Acustica United with Acustica 103 421 [36] Liu Z L, Song L H, Bai L, Xu K L and Ta D A 2017 Acta Phys. Sin. 66 154303 (in Chinese) [37] Moilanen P, Salmi A, Kilappa V, Zhao Z, Timonen J and Haeggstrom E 2017 J. Appl. Phys. 122 144901 [38] Tran T, Sacchi M D, Ta D, Nguyen V H, Lou E and Le L H 2019 Annals of Biomedical Engineering 47 2178 [39] Conversano F, Franchini R, Greco A, Soloperto G, Chiriaco F, Casciaro E, Aventaggiato M, Renna M D, Pisani P, Di Paola M, Grimaldi A, Quarta L, Quarta E, Muratore M, Laugier P and Casciaro S 2015 Ultrasound in Medicine and Biology 41 281 [40] Langton C M and Njeh C F 2008 IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55 1546 [41] Qin Y X, Xia Y, Muir J, Lin W and Rubin C T 2019 J. Orthop. Transl. 18 48 [42] Hoffmeister B K, Mcpherson J A, Smathers M R, Spinolo P L and Sellers M E 2015 IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 62 2115 [43] Hakulinen M A, Day J S, Toyras J, Weinans H and Jurvelin J S 2006 Physics in Medicine and Biology 51 1633 [44] Liu C, Xu F, Ta D, Tang T, Jiang Y, Dong J, Wang W P, Liu X, Wang Y and Wang W Q 2016 Journal of Ultrasound in Medicine 35 2197 [45] Hoffmeister B K, Huber M T, Viano A M and Huang J 2018 J. Acoust. Soc. Am. 143 911 [46] Lee K I 2018 J. Acoust. Soc. Am. 144 EL386 [47] Dong R, Liu C C, Cai X B, Shao L L, Li B Y and Ta D A 2019 Acta Phys. Sin. 68 184301 (in Chinese) [48] Yousefian O, Karbalaeisadegh Y and Muller M 2020 Physics in Medicine and Biology 66 035026 [49] Chaffa?S, Peyrin F, Nuzzo S, Porcher R, Berger G and Laugier P 2002 Bone 30 229 [50] Hoffmeister B K, Johnson D P, Janeski J A, Keedy D A, Steinert B W, Viano A M and Kaste S C 2008 IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55 1442 [51] Mao W, Du Y, Liu C, Li B, Ta D, Chen C and Zhang R 2020 Computational and Mathematical Methods in Medicine 2020 3187268 [52] Rodriguez-Sendra J, Jimenez N, Pico R, Faus J and Camarena F 2019 IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 66 1658 [53] Padilla F, Jenson F, Bousson V, Peyrin F and Laugier P 2008 Bone 42 1193 [54] Karjalainen J P, Töräs J, Riekkinen O, Hakulinen M and Jurvelin J S 2009 Ultrasound in Medicine & Biology 35 1376 [55] Hakulinen M A, Töräs J, Saarakkala S, Hirvonen J, Kröger H and Jurvelin J S 2004 Ultrasound in Medicine & Biology 30 919 [56] Hakulinen M A, Day J S, Töräs J, Timonen M, Kröger H, Weinans H, Kiviranta I and Jurvelin J S 2005 Physics in Medicine & Biology 50 1629 [57] Hoffmeister B K, Viano A M, Fairbanks L C, Ebron S C, Mcpherson J A and Huber M T 2017 J. Acoust. Soc. Am. 142 540 [58] Yan Y B, Qi W, Qiu T X, Teo E C and Lei W 2012 Journal of Mechanics in Medicine and Biology 12 1250092 [59] Hoffmeister B K, Gray A J, Sharp P C, Fairbanks L C and Huang J 2020 Ultrasound in Medicine & Biology 46 2412 [60] Schmitz T L and Smith K S 2021 Mechanical Vibrations: Modeling and Measurement (Cham: Springer) pp. 89-132 [61] Shabana A A 2019 Theory of Vibration: An Introduction (New York: Springer) pp. 129-176 [62] Jia J 2014 Essentials of Applied Dynamic Analysis (Heidelberg, Berlin: Springer) pp. 141-172 [63] Liu C, Li B, Diwu Q, Li Y, Zhang R, Ta D and Wang W 2018 IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 65 2311 [64] Liu C, Tang T, Xu F, Ta D, Matsukawa M, Hu B and Wang W 2015 Ultrasound in Medicine & Biology 41 2714 [65] Li B, Xu F, Liu C, Li D, Le L H, Ta D and Wang W 2019 IEEE Access 7 83034 [66] Lee K I 2020 J. Acoust. Soc. Am. 148 EL51 [67] Li Y, Li B, Xu F, Liu C, Ta D and Wang W 2018 Measurement 122 128 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|