Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 014303    DOI: 10.1088/1674-1056/ac6dad
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion

Yu-Bing Li(李玉冰)1, Jian Wang(王建)1,†, Chang Su(苏畅)1,2,3,‡, Wei-Jun Lin(林伟军)1,2,3, Xiu-Ming Wang(王秀明)1,2,3, and Yi Luo(骆毅)2
1 Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of the Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Deep Sea Drilling Measurement Engineering Technology Research Center, Beijing 100190, China
Abstract  High-resolution images of human brain are critical for monitoring the neurological conditions in a portable and safe manner. Sound speed mapping of brain tissues provides unique information for such a purpose. In addition, it is particularly important for building digital human acoustic models, which form a reference for future ultrasound research. Conventional ultrasound modalities can hardly image the human brain at high spatial resolution inside the skull due to the strong impedance contrast between hard tissue and soft tissue. We carry out numerical experiments to demonstrate that the time-domain waveform inversion technique, originating from the geophysics community, is promising to deliver quantitative images of human brains within the skull at a sub-millimeter level by using ultra-sound signals. The successful implementation of such an approach to brain imaging requires the following items: signals of sub-megahertz frequencies transmitting across the inside of skull, an accurate numerical wave equation solver simulating the wave propagation, and well-designed inversion schemes to reconstruct the physical parameters of targeted model based on the optimization theory. Here we propose an innovative modality of multiscale deconvolutional waveform inversion that improves ultrasound imaging resolution, by evaluating the similarity between synthetic data and observed data through using limited length Wiener filter. We implement the proposed approach to iteratively update the parametric models of the human brain. The quantitative imaging method paves the way for building the accurate acoustic brain model to diagnose associated diseases, in a potentially more portable, more dynamic and safer way than magnetic resonance imaging and x-ray computed tomography.
Keywords:  ultrasound brain imaging      full waveform inversion      high resolution      digital body  
Received:  14 February 2022      Revised:  15 April 2022      Accepted manuscript online:  07 May 2022
PACS:  43.60.Lq (Acoustic imaging, displays, pattern recognition, feature extraction)  
  43.80.Qf (Medical diagnosis with acoustics)  
  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
  87.63.dh (Ultrasonographic imaging)  
Fund: Project supported by the Goal-Oriented Project Independently Deployed by Institute of Acoustics, Chinese Academy of Sciences (Grant No. MBDX202113).
Corresponding Authors:  Jian Wang, Chang Su     E-mail:  wangjian1@mail.ioa.ac.cn;suchang@mail.ioa.ac.cn

Cite this article: 

Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅) Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion 2023 Chin. Phys. B 32 014303

[1] von Ramm O T, Smith S W and Kisslo J A 1978 Ultrasound Tomography of the Adult Brain Ultrasound in Medicine (Boston, MA: Springer US) pp. 261-267
[2] Smith S W, Ivancevich N M, Lindsey B D, Whitman J, Light E, Fronheiser M, Nicoletto H A and Laskowitz D T 2009 Ultrasound Med. Biol. 35 329
[3] Niesen W D, Rosenkranz M and Weiller C 2018 Front. Neurol. 9 374
[4] Hoskins P R, Martin K and Thrush A 2019 Diagnostic Ultrasound (Boca Raton, FL: CRC Press)
[5] Jiang C, Li Y, Xu K and Ta D 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 72
[6] Andersen A 1990 Ultrason. Imaging 12 268
[7] Guillermin R, Lasaygues P, Rabau G and Lefebvre J P 2013 J. Acoust. Soc. Am. 134 1001
[8] Zheng R, Le L H, Sacchi M D and Lou E 2015 Ultrasound Med. Biol. 41 2955
[9] Li C, Duric N, Littrup P and Huang L 2009 Ultrasound Med. Biol. 35 1615
[10] Hooi F M and Carson P L 2014 Med. Phys. 41 082902
[11] Zheng R, Le L H, Sacchi M D and Lou E 2015 Ultrasound Med. Biol. 41 2955
[12] Guasch L, Agudo O C, Tang M X, Nachev P and Warner M 2020 npj Digit. Med. 3 28
[13] Yang G, Pan F, Parkhurst C N, Grutzendler J and Gan W B 2010 Nat. Protoc. 5 201
[14] Macé E, Montaldo G, Cohen I, Baulac M, Fink M and Tanter M 2011 Nat. Methods 8 662
[15] Tarantola A 1984 Geophysics 49 1259
[16] Pratt R G 1999 Geophysics 64 888
[17] Virieux J and Operto S 2009 Geophysics 74 WCC1
[18] Luo Y and Schuster T G 1991 Geophysics 56 645
[19] Luo S and Sava P 2011 SEG Technical Program Expanded Abstracts 2011, March 29-April 1, 2011, San Antonio, Texas, USA, 2788
[20] Warner M and Guasch L 2016 Geophysics 81 R429
[21] Li C, Sandhu G S, Roy O, Duric N, Allada V and Schmidt S 2014 Proceedings of SPIE, Medical Imaging 2014: Ultrasonic Imaging and Tomography, March 20, 2014, San Diego, California, USA, 90401P
[22] Wang K, Matthews T, Anis F, Li C, Duric N and Anastasio M A 2015 IEEE Trans. Ultrason. Ferroelectr. 62 475
[23] Bernard S, Monteiller V, Komatitsch D and Lasaygues P 2017 Phys. Med. Biol. 62 7011
[24] Nocedal J and Wright S J 1999 Numerical Optimization (Springer New York)
[25] Tromp J, Tape C and Liu Q 2004 Geophys. J. Int. 160 195
[26] Plessix R E 2006 Geophys. J. Int. 167 495
[27] Devaney A J 1984 IEEE Trans. Geosci. Remote Sens. GE-22 3
[28] Miller D, Oristaglio M and Beylkin G 1987 Geophysics 52 943
[29] Alkhalifah T, Sun B B and Wu Z 2018 Geophysics 83 R597
[30] Lambaré G, Virieux J, Madariaga R and Jin S 1992 Geophysics 57 1138
[31] Guasch L, Warner M and Ravaut C 2019 Geophysics 84 R447
[32] Jiang C, Li Y, Li B, Liu C, Xu F, Xu K and Ta D 2019 IEEE Access 7 163013
[33] Aubry J F, Tanter M, Pernot M, Thomas J L and Fink M 2003 J. Acoust. Soc. Am. 113 84
[34] Alford R M, Kelly K R and Boore D M 1974 Geophysics 39 834
[35] Virieux J 1986 Geophysics 51 889
[36] Taillandier C, Noble M, Chauris H and Calandra H 2009 Geophysics 74 WCB1
[1] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[2] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[3] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[4] Structural characterization of Al0.55Ga0.45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy
Qing-Jun Xu(徐庆君), Bin Liu(刘斌), Shi-Ying Zhang(张士英), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(4): 047801.
[5] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi (马亚琪), Shao Jin-Hai (邵金海), Zhang Ya-Feng (张亚峰), Lu Bing-Rui (陆冰睿), Zhang Si-Chao (张思超), Sun Yan (孙艳), Qu Xin-Ping (屈新萍), Chen Yi-Fang (陈宜方). Chin. Phys. B, 2015, 24(8): 080702.
[6] A 23.75-GHz frequency comb with two low-finesse filtering cavities in series for high resolution spectroscopy
Hou Lei (侯磊), Han Hai-Nian (韩海年), Wang Wei (王薇), Zhang Long (张龙), Pang Li-Hui (庞利辉), Li De-Hua (李德华), Wei Zhi-Yi (魏志义). Chin. Phys. B, 2015, 24(2): 024213.
[7] Epitaxial growth of Ge1-xSnx films with x up to 0.14 grown on Ge (00l) at low temperature
Tao Ping (陶平), Huang Lei (黄磊), Cheng H H, Wang Huan-Hua (王焕华), Wu Xiao-Shan (吴小山). Chin. Phys. B, 2014, 23(8): 088112.
[8] The laser-intensity dependence of the photoassociation spectrum of the ultracold Cs2(6S1/2+6P1/2) 0u+ long-range molecular state
Jin Li (金丽), Feng Guo-Sheng (冯国胜), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Wang Li-Rong (汪丽蓉), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2013, 22(8): 088701.
[9] Nanoelectronic devices---resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature
Zhang Yang (张杨), Zeng Yi-Ping (曾一平), Ma Long (马龙), Wang Bao-Qiang (王宝强), Zhu Zhan-Ping (朱占平), Wang Liang-Chen (王良臣), Yang Fu-Hua (杨富华). Chin. Phys. B, 2006, 15(6): 1335-1338.
[10] Application of the high-resolution Godunov method to the multi-fluid flow calculations
Bai Jing-Song (柏劲松), Li Ping (李平), Zhang Zhan-Ji (张展冀), Hua Jing-Song (华劲松), Tan Hua (谭华). Chin. Phys. B, 2004, 13(12): 1992-1998.
No Suggested Reading articles found!