Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 068404    DOI: 10.1088/1674-1056/21/6/068404
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Temperature dependence of birefringence in olarization-maintaining photonic crystal fibres

Zhao Hong(赵红), Chen Meng(陈檬), and Li Gang(李港)
Beijing University of Technology, Institute of Laser Engineering, Beijing 100124, China
Abstract  In this paper, the temperature dependence of birefringence in polarization maintaining photonic crystal fibres (PM-PCFs) is investigated theoretically and experimentally. Utilizing the structural parameters of the PM-PCF samples in the experiment, two effects leading to the birefringence variation under different temperatures are analysed, which are the thermal expansion of silica material and the refractive index variation due to the temperature variation. The actual birefringence variation of the PM-PCF is the combination of the two effects, which is in the order of 10-9 K-1 for both fibre samples. Calculation results also show that the influence of refractive index variation is the dominant contribution, which determines the tendency of the fibre birefringence variation with varying temperature. Then, the birefringence beat lengths of the two fibre samples are measured under the temperature, which varies from -40 ℃ to 80 ℃. A traditional PANDA-type polarization maintaining fibre (PMF) is also measured in the same way for comparison. The experimental results indicate that the birefringence variation of the PM-PCF due to temperature variation is far smaller than that of the traditional PMF, which agrees with the theoretical analysis. The ultra-low temperature dependence of the birefringence in the PM-PCF has great potential applications in temperature-insensitive fibre interferometers, fibre sensors, and fibre gyroscopes.
Keywords:  birefringence      polarization-maintaining fibre      photonic crystal fibre      temperature dependence  
Received:  14 January 2012      Revised:  10 February 2012      Accepted manuscript online: 
PACS:  84.71.Mn (Superconducting wires, fibers, and tapes)  
  42.81.-i (Fiber optics)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
Corresponding Authors:  Chen Meng     E-mail:  chenmeng@bjut.edu.cn

Cite this article: 

Zhao Hong(赵红), Chen Meng(陈檬), and Li Gang(李港) Temperature dependence of birefringence in olarization-maintaining photonic crystal fibres 2012 Chin. Phys. B 21 068404

[1] Knight J C, Briks T A and Russell P S J 1996 Opt. Lett. 21 1547
[2] Suzuki K, Kubota H and Kawanishi S 2001 Opt. Express 9 676
[3] Yue Y, Kai G and Wang Z 2006 IEEE Photon Tech. Lett. 18 2638
[4] Chen D and Shen I 2007 J. Lightwave Technol. 25 2700
[5] Hansen T P, Broeng J and Libori E B 2001 IEEE Photon. Tech. Lett. 13 588
[6] Lou S Q, Wang Z, Ren G B and Jian S S 2005 Acta Eletron. Sin. 33 393 (in Chinese)
[7] Zhang X J, Zhao J L and Hou J P 2007 Acta Phys. Sin. 56 4668 (in Chinese) [RefAutoNo] Zhang L, Shu G, Yao Y Y, Fu B, Zhang M Y and Zheng Y 2010 Acta Phys. Sin. 59 1101 (in Chinese)
[9] Afshar S, Warren-Smith S C and Monro T M 2007 Opt. Express 15 17891
[10] Jesee T, Farhad H and Willig R L 2006 Opt. Fiber Sensors ME8
[11] Zhou R, Zhang J, Hu M L, Feng Z Y, Gao H, Yang Y, Zhang J H and Qiao X G 2012 Acta Phys. Sin. 61 014216 (in Chinese)
[12] Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R and Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)
[13] Yang J Y, Feng H and Wang M H 1996 Chin. J. Comput. Phys. 13 21 (in Chinese)
[14] Chun J X, Yuan H Y, Duan W Q and Yang W 2010 J. Beijing University of Aeronautics and Astronautics l36 753 (in Chinese)
[1] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[2] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[3] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[4] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[5] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[6] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[7] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[8] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[9] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[10] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[11] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[12] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[13] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[14] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[15] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
No Suggested Reading articles found!