Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平)1,†, Qian-Yu Bai(白倩玉)2,†, Gang Liu(刘刚)1, Peng Dong(董鹏)1, Da-Wei Liu(刘大伟)1, Yu-Feng Ni(倪玉凤)1, Chen-Bo Liu(刘晨波)2, He Xi(习鹤)2, Wei-Dong Zhu(朱卫东)2, Da-Zheng Chen(陈大正)2,‡, and Chun-Fu Zhang(张春福)2
1. Qinghai Huanghe Hydropower Development CO., LTD., Xining 810008, China; 2. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China
Abstract Perovskite/silicon (Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional (3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional (2D) (BA)2(MA)n-1PbnI3n+1 (n=1, 2, 3, 4, 5) (where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells (PSCs) to construct a four-terminal (4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell (n=4) obtains a power conversion efficiency (PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride (LiF) anti-reflection layer to reduce the surface reflection loss, the current density (Jsc) of the top cell is enhanced from 15.56 mA/cm2 to 17.09 mA/cm2, the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n=3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004151, 62274126, 62274126, 61874083, and 61804113) and the China Postdoctoral Science Foundation (Grant No. 2020T130490).
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福) Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency 2022 Chin. Phys. B 31 108801
[1] Chapin D M, Fuller C S and Pearson G L 1954 J. Appl. Phys.25 676 [2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energy2 1 [3] Richter A, Hermle M and Glunz S W 2013 IEEE J. Photovolt.3 1184 [4] Li C, Yang R and Tian H 2018 Physics47 367 [5] Beiley Z and McGehee M 2012 Energy Environ. Sci.5 9173 [6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc.131 6050 [7] NREL https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf [8] Wang T, Xiao G, Sun R, Luo L and Yi M 2022 Chin. Phys. B31 018801 [9] Zhang Z, Xu L and Qi J 2021 Chin. Phys. B30 038801 [10] Long C, Wang N, Huang Ke, Li H, Liu B and Yang J 2020 Chin. Phys. B29 048801 [11] Hu Y, Song L, Chen Y and Huang W 2019 Sol. RRL3 1900080 [12] Bailie C and McGehee M 2015 MRS Bull.40 681 [13] Lal N, White T P and Catchpole K 2014 IEEE J. Photovolt.4 1380 [14] Yang D, Zhang X, Hou Y, Wang K, Ye T, Yoon J, Wu C, Sanghadasa M, Liu (Frank) S and Priya S 2021 Nano Energy84 105934 [15] Choi H and Kim H 2020 Materials13 3868 [16] Liu C, Li W, Chen J, Fan J, Mai Y and Schroppcd R 2017 Nano Energy41 75 [17] Yuan H, Zhao Y, Duan J, Wang Y, Yang X and Tang Q 2018 J. Mater. Chem. A6 24324 [18] Duan J, Zhao Y, Yang X, Wang Y, He B and Tang Q 2018 Adv. Energy Mater.8 1802346 [19] Tsai H, Nie W, Blancon J, Stoumpos C, Asadpour R, Harutyunyan B, Neukirch A, Verduzco R, Crochet J, Tretiak S, Pedesseau L, Even J, Alam M, Gupta G, Lou J, Ajayan P, Bedzyk M, Kanatzidis M and Mohite A 2016 Nature536 312 [20] Hu J, Oswald I, Stuard S, Nahid M, Zhou N, Williams O, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A, Ade H, Neilson J and You W 2019 Nat. Commun.10 1 [21] Fu W, Chen H and Jen A 2021 Mater. Today Nano14 100117 [22] Lee J, Dai Z, Han T, Choi C, Chang S, Lee S, Marco N, Zhao H, Sun P, Huang Y and Yang Y 2018 Nat. Commun.9 1 [23] Lai X, Li W, Gu X, Chen H, Zhang Y, Li G, Zhang R, Fan D, He F, Zheng N, Yu J, Chen R, KoKyaw A and Sun X 2022 Chem. Eng. J.427 130949 [24] Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X and Li C 2019 Joule3 794 [25] Shao M, Bie T, Yang L, Gao Y, Jin X, He F, Zheng N, Yu Y and Zhang X 2022 Adv. Mater.34 2107211 [26] Zhang Y and Park N G 2022 ACS Energy Lett.7 757 [27] Wu G, Yang T, Li X, Ahamd N, Zhang X, Yue S, Zhou J, Li Y, Wang H, Shi X, Liu S, Zhao K, Zhou H and Zhang Y 2021 Matter4 582 [28] Song B, Hou J, Wang H, Sidhik S, Miao J, Gu H, Zhang H, Liu S, Fakhraai Z, Even J, Blancon J, Mohite A and Jariwala D 2021 ACS Mater. Lett.3 148 [29] Manzoor S, Häusele J, Bush K, Palmstrom A, Carpenter J, Yu Z, Bent S, Mcgehee M and Holman 2018 Opt. Express26 27441 [30] Filipič M, Löper P, Niesen B, Wolf S D, Krč J, Ballif C and Topič M 2015 Opt. Express23 A263 [31] Jiang Y, Pillai S and Green M 2016 Sci. Rep.6 1 [32] Li H 1976 J. Phys. Chem. Ref. Data5 329 [33] Chen Y, Meng Q, Zhang L, Han C, Gao H, Zhang Y and Yan H 2019 J. Energy Chem.35 144 [34] Ho-Baillie A, Zhang M, Lau C, Ma F and Huang S 2019 Joule3 938 [35] He T, Li S, Jiang Y, Qin C, Cui M, Qiao L, Xu H, Yang J, Long R, Wang H and Yuan M 2020 Nat. Commun.11 1 [36] Guo Y, Wang J, Huang R and Wang G 2002 J. Inorg. Mater.17 131 [37] Oppong-Antwi L, Huang S, Li Q, Chi D, Meng X and He L 2017 Sol. Energy141 222 [38] Zhou Q, Duan J, Du J, Guo Q, Zhang Q, Yang X, Duan Y and Tang Q 2021 Adv. Sci.8 2101418 [39] Meng W, Hou Y, Karl A, Gu E, Tang X, Osvet A, Zhang K, Zhao Y, Du X, Cerrillo J, Li N and Brabec C 2019 ACS Energy Lett.5 271 [40] Liu C, Xi H, Yan H, Yang H, Chen D, Dong H, Zhu W, Zhang J, Zhang C and Hao Y 2021 Semicond. Sci. Technol.36 065019 [41] Duong T, Pham H and Kho T 2020 Adv. Energy Mater.10 1903553 [42] Zhao P, Yue M, Lei C, Lin Z, Su J, Chen D, Zhang C, Zhang J, Chang J and Hao Y 2018 IEEE J. Photovolt.8 1685 [43] He F, Fei W, Wang Y, Liu C, Guo Q, Lan W, Fan G, Lu G, Chen D, Zhu W, Xi H and Zhang C 2021 IEEE Photon. J.13 8400108 [44] Liu C, Zhang C, Pang S, Dong H, Zhang Z, Chen D, Zhu W, Zhang J and Hao Y 2020 IEEE Photon. J.12 18400312 [45] Quan L, Yuan M, Comin R, Voznyy O, Beauregard E, Hoogland S, Buin A, Kirmani A, Zhao K, Amassian A, Kim Dong and Sargen E 2016 J. Am. Chem. Soc.138 2649 [46] Passarelli J, Fairfield D, Sather N, Hendricks M, Sai H, Stern C and Stupp S 2018 J. Am. Chem. Soc.140 7313 [47] Liang C, Gu H, Xia Y, et al. 2021 Nat. Energy6 38
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.