Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108801    DOI: 10.1088/1674-1056/ac7292
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency

Xiao-Ping Xie(谢小平)1,†, Qian-Yu Bai(白倩玉)2,†, Gang Liu(刘刚)1, Peng Dong(董鹏)1, Da-Wei Liu(刘大伟)1, Yu-Feng Ni(倪玉凤)1, Chen-Bo Liu(刘晨波)2, He Xi(习鹤)2, Wei-Dong Zhu(朱卫东)2, Da-Zheng Chen(陈大正)2,‡, and Chun-Fu Zhang(张春福)2
1. Qinghai Huanghe Hydropower Development CO., LTD., Xining 810008, China;
2. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China
Abstract  Perovskite/silicon (Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional (3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional (2D) (BA)2(MA)n-1PbnI3n+1 (n=1, 2, 3, 4, 5) (where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells (PSCs) to construct a four-terminal (4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell (n=4) obtains a power conversion efficiency (PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride (LiF) anti-reflection layer to reduce the surface reflection loss, the current density (Jsc) of the top cell is enhanced from 15.56 mA/cm2 to 17.09 mA/cm2, the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n=3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.
Keywords:  two-dimensional      device simulation      antireflection layers      tandem solar cells  
Received:  02 March 2022      Revised:  10 May 2022      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.J- (Types of solar cells)  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004151, 62274126, 62274126, 61874083, and 61804113) and the China Postdoctoral Science Foundation (Grant No. 2020T130490).
Corresponding Authors:  Da-Zheng Chen     E-mail:  dzchen@xidian.edu.cn

Cite this article: 

Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福) Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency 2022 Chin. Phys. B 31 108801

[1] Chapin D M, Fuller C S and Pearson G L 1954 J. Appl. Phys. 25 676
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energy 2 1
[3] Richter A, Hermle M and Glunz S W 2013 IEEE J. Photovolt. 3 1184
[4] Li C, Yang R and Tian H 2018 Physics 47 367
[5] Beiley Z and McGehee M 2012 Energy Environ. Sci. 5 9173
[6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[7] NREL https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf
[8] Wang T, Xiao G, Sun R, Luo L and Yi M 2022 Chin. Phys. B 31 018801
[9] Zhang Z, Xu L and Qi J 2021 Chin. Phys. B 30 038801
[10] Long C, Wang N, Huang Ke, Li H, Liu B and Yang J 2020 Chin. Phys. B 29 048801
[11] Hu Y, Song L, Chen Y and Huang W 2019 Sol. RRL 3 1900080
[12] Bailie C and McGehee M 2015 MRS Bull. 40 681
[13] Lal N, White T P and Catchpole K 2014 IEEE J. Photovolt. 4 1380
[14] Yang D, Zhang X, Hou Y, Wang K, Ye T, Yoon J, Wu C, Sanghadasa M, Liu (Frank) S and Priya S 2021 Nano Energy 84 105934
[15] Choi H and Kim H 2020 Materials 13 3868
[16] Liu C, Li W, Chen J, Fan J, Mai Y and Schroppcd R 2017 Nano Energy 41 75
[17] Yuan H, Zhao Y, Duan J, Wang Y, Yang X and Tang Q 2018 J. Mater. Chem. A 6 24324
[18] Duan J, Zhao Y, Yang X, Wang Y, He B and Tang Q 2018 Adv. Energy Mater. 8 1802346
[19] Tsai H, Nie W, Blancon J, Stoumpos C, Asadpour R, Harutyunyan B, Neukirch A, Verduzco R, Crochet J, Tretiak S, Pedesseau L, Even J, Alam M, Gupta G, Lou J, Ajayan P, Bedzyk M, Kanatzidis M and Mohite A 2016 Nature 536 312
[20] Hu J, Oswald I, Stuard S, Nahid M, Zhou N, Williams O, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A, Ade H, Neilson J and You W 2019 Nat. Commun. 10 1
[21] Fu W, Chen H and Jen A 2021 Mater. Today Nano 14 100117
[22] Lee J, Dai Z, Han T, Choi C, Chang S, Lee S, Marco N, Zhao H, Sun P, Huang Y and Yang Y 2018 Nat. Commun. 9 1
[23] Lai X, Li W, Gu X, Chen H, Zhang Y, Li G, Zhang R, Fan D, He F, Zheng N, Yu J, Chen R, KoKyaw A and Sun X 2022 Chem. Eng. J. 427 130949
[24] Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X and Li C 2019 Joule 3 794
[25] Shao M, Bie T, Yang L, Gao Y, Jin X, He F, Zheng N, Yu Y and Zhang X 2022 Adv. Mater. 34 2107211
[26] Zhang Y and Park N G 2022 ACS Energy Lett. 7 757
[27] Wu G, Yang T, Li X, Ahamd N, Zhang X, Yue S, Zhou J, Li Y, Wang H, Shi X, Liu S, Zhao K, Zhou H and Zhang Y 2021 Matter 4 582
[28] Song B, Hou J, Wang H, Sidhik S, Miao J, Gu H, Zhang H, Liu S, Fakhraai Z, Even J, Blancon J, Mohite A and Jariwala D 2021 ACS Mater. Lett. 3 148
[29] Manzoor S, Häusele J, Bush K, Palmstrom A, Carpenter J, Yu Z, Bent S, Mcgehee M and Holman 2018 Opt. Express 26 27441
[30] Filipič M, Löper P, Niesen B, Wolf S D, Krč J, Ballif C and Topič M 2015 Opt. Express 23 A263
[31] Jiang Y, Pillai S and Green M 2016 Sci. Rep. 6 1
[32] Li H 1976 J. Phys. Chem. Ref. Data 5 329
[33] Chen Y, Meng Q, Zhang L, Han C, Gao H, Zhang Y and Yan H 2019 J. Energy Chem. 35 144
[34] Ho-Baillie A, Zhang M, Lau C, Ma F and Huang S 2019 Joule 3 938
[35] He T, Li S, Jiang Y, Qin C, Cui M, Qiao L, Xu H, Yang J, Long R, Wang H and Yuan M 2020 Nat. Commun. 11 1
[36] Guo Y, Wang J, Huang R and Wang G 2002 J. Inorg. Mater. 17 131
[37] Oppong-Antwi L, Huang S, Li Q, Chi D, Meng X and He L 2017 Sol. Energy 141 222
[38] Zhou Q, Duan J, Du J, Guo Q, Zhang Q, Yang X, Duan Y and Tang Q 2021 Adv. Sci. 8 2101418
[39] Meng W, Hou Y, Karl A, Gu E, Tang X, Osvet A, Zhang K, Zhao Y, Du X, Cerrillo J, Li N and Brabec C 2019 ACS Energy Lett. 5 271
[40] Liu C, Xi H, Yan H, Yang H, Chen D, Dong H, Zhu W, Zhang J, Zhang C and Hao Y 2021 Semicond. Sci. Technol. 36 065019
[41] Duong T, Pham H and Kho T 2020 Adv. Energy Mater. 10 1903553
[42] Zhao P, Yue M, Lei C, Lin Z, Su J, Chen D, Zhang C, Zhang J, Chang J and Hao Y 2018 IEEE J. Photovolt. 8 1685
[43] He F, Fei W, Wang Y, Liu C, Guo Q, Lan W, Fan G, Lu G, Chen D, Zhu W, Xi H and Zhang C 2021 IEEE Photon. J. 13 8400108
[44] Liu C, Zhang C, Pang S, Dong H, Zhang Z, Chen D, Zhu W, Zhang J and Hao Y 2020 IEEE Photon. J. 12 18400312
[45] Quan L, Yuan M, Comin R, Voznyy O, Beauregard E, Hoogland S, Buin A, Kirmani A, Zhao K, Amassian A, Kim Dong and Sargen E 2016 J. Am. Chem. Soc. 138 2649
[46] Passarelli J, Fairfield D, Sather N, Hendricks M, Sai H, Stern C and Stupp S 2018 J. Am. Chem. Soc. 140 7313
[47] Liang C, Gu H, Xia Y, et al. 2021 Nat. Energy 6 38
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[7] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[8] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[9] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[10] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[11] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[15] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
No Suggested Reading articles found!