Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120202    DOI: 10.1088/1674-1056/ac6869
GENERAL Prev   Next  

Rogue waves of a (3+1)-dimensional BKP equation

Yu-Qiang Yuan(袁玉强)1, Xiao-Yu Wu(武晓昱)2, and Zhong Du(杜仲)3,†
1 Department of Mathematics, China University of Mining and Technology(Beijing), Beijing 100083, China;
2 School of Science, Beijing Forestry University, Beijing 100083, China;
3 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
Abstract  We investigate certain rogue waves of a (3+1)-dimensional BKP equation via the Kadomtsev-Petviashili hierarchy reduction method. We obtain semi-rational solutions in the determinant form, which contain two special interactions: (i) one lump develops from a kink soliton and then fuses into the other kink one; (ii) a line rogue wave arises from the segment between two kink solitons and then disappears quickly. We find that such a lump or line rogue wave only survives in a short time and localizes in both space and time, which performs like a rogue wave. Furthermore, the higher-order semi-rational solutions describing the interaction between two lumps (one line rogue wave) and three kink solitons are presented.
Keywords:  (3+1)-dimensional BKP equation      Kadomtsev-Petviashvili hierarchy reduction      interaction      rogue wave      lump  
Received:  10 March 2022      Revised:  13 April 2022      Accepted manuscript online:  20 April 2022
PACS:  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
  04.30.Nk (Wave propagation and interactions)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2021XJLX01 and BLX201927), China Post-doctoral Science Foundation (Grant No. 2019M660491), and the Natural Science Foundation of Hebei Province, China (Grant No. A2021502003).
Corresponding Authors:  Zhong Du     E-mail:  duzhong002@ncepu.edu.cn

Cite this article: 

Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲) Rogue waves of a (3+1)-dimensional BKP equation 2022 Chin. Phys. B 31 120202

[1] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 31 125
[2] Zhang H S, Wang L, Sun W R, Wang X and Xu T 2021 Physica D 419 132849
[3] Fang Y, Wu G Z, Wang Y Y and Dai C Q 2021 Nonlinear Dyn. 105 603
[4] Xu T, Li L, Li M, Li C and Zhang X 2021 Proc. R. Soc. A 477 2254
[5] Yang B and Yang J 2021 IMA J. Appl. Math. 86 378
[6] Lü X and Chen S J 2021 Nonlinear Dyn. 103 947
[7] Wang B H, Wang Y Y, Dai C Q and Chen Y X 2020 Alex. Eng. J. 59 4699
[8] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[9] Dai C Q and Zhang J F 2020 Nonlinear Dyn. 100 1621
[10] Yang Y X, Yao S K, Zhang C H and Zhao W Z 2015 Chin. Phys. Lett. 32 40202
[11] He X J and Lü X 2022 Math. Comput. Simulat. 197 327
[12] Lü X and Chen S J 2021 Commun. Nonlinear Sci. 103 105939
[13] Zhang H and Liu D Y 2020 Appl. Math. Lett. 102 106102
[14] Chen S J, Lü X, Li M G and Wang F 2021 Phys. Scripta 96 095201
[15] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 10202
[16] Ma W X and Fan E G 2011 Comput. Math. Appl. 61 950
[17] Ma W X and Zhu Z 2012 Appl. Math. Comput. 218 11871
[18] Ma W X, Qin Z and Lü X 2016 Nonlinear Dyn. 84 923
[19] Sun Y, Tian B, Liu L, Chai H P and Yuan Y Q 2017 Commun. Theor. Phys. 68 693
[20] Ding C C, Gao Y T and Deng G F 2019 Nonlinear Dyn. 97 2023
[21] Ohta Y and Yang J 2012 Phys. Rev. E 86 036604
[22] Chen J, Feng B F, Maruno K I and Ohta Y 2018 Stud. Appl. Math. 141 145
[23] Rao J, Chow K W, Mihalache D and He J 2021 Stud. Appl. Math. 147 1007
[24] Lü X and Chen S J 2021 Commun. Nonlinear Sci. 103 105939
[25] Rao J, He J and Mihalache D 2021 Appl. Math. Lett. 121 107435
[26] Rao J, Fokas A S and He J 2021 J. Nonlinear Sci. 31 1
[27] Lü X and Chen S J 2022 Commun. Nonlinear Sci. 109 106103
[28] Hirota R 2004 The direct method in soliton theory (Cambridge University Press) p. 23
[29] Date E, Jimbo M, Kashiwara M and Miwa T 1982 Publ. Res. I. Math. Sci. 18 1077
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[5] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[6] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[7] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[10] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[11] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[12] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[13] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[14] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[15] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
No Suggested Reading articles found!