Abstract Reciprocal transformations of the space-time shifted nonlocal short pulse equations are elaborated. Covariance of dependent and independent variables involved in the reciprocal transformations is investigated. Exact solutions of the space-time shifted nonlocal short pulse equations are given in terms of double Wronskians. Realness of independent variables involved in the reciprocal transformations is verified. Dynamics of some obtained solutions are illustrated.
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军) Reciprocal transformations of the space-time shifted nonlocal short pulse equations 2022 Chin. Phys. B 31 120201
[1] Albares P, Estévez P G and Sardón C 2020 in: Nonlinear Systems and Their Remarkable Mathematical Structures Vol. 2, eds. Euler N and Nucci M C (CRC Press, Taylor & Francis: Boca Raton) p. 1 [2] Camassa R and Holm D D 1993 Phys. Rev. Lett.71 1661 [3] Vakhnenko V A 1992 J. Phys. A: Math. Gen.25 4181 [4] Schäfer T and Wayne C E 2004 Physica D196 90 [5] Baran H and Marvan M 2009 J. Phys. A: Math. Theor.42 404007 [6] Chung Y, Jones C K R T, Schäfer T and Wayne C E 2005 Nonlinearity18 1351 [7] Rabelo M L 1987 "Caracterizaco das Equaces Diferenciais do Tipo , Que Descrevem Superficies Pseudo-esfericas" Doctoral Thesis (University de Brasilia) [8] Beals R, Rabelo M and Tenenblat K 1998 Stud. Appl. Math.81 125 [9] Rabelo M L 1989 Stud. Appl. Math.81 221 [10] Wadati M, Konno K and Ichikawa Y H 1979 J. Phys. Soc. Jpn.47 1698 [11] Sakovich A and Sakovich S 2005 J. Phys. Soc. Jpn.74 239 [12] Pedlosky J 1972 J. Atmos. Sci.29 680 [13] Konno K and Oono H 1994 J. Phys. Soc. Jpn.63 377 [14] Kuetche V K, Bouetou T B and Kofane T C 2007 J. Phys. Soc. Jpn.76 024004 [15] Matsuno Y 2007 J. Phys. Soc. Jpn.76 084003 [16] Pietrzyk M, Kanattsikov I and Bandelow U 2008 J. Nonl. Math. Phys.15 162 [17] Dimakis A and Müller-Hoissen F 2010 Symmetry Integrability Geom.: Meth. Appl. (SIGMA)6 055 [18] Matsuno Y 2011 J. Math. Phys.52 123702 [19] Feng B F 2012 J. Phys. A: Math. Theor.45 085202 [20] Feng B F 2015 Physica D297 62 [21] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett.110 064105 [22] Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E90 032912 [23] Ablowitz M J and Musslimani Z H 2016 Nonlinearity29 915 [24] Fokas A S 2016 Nonlinearity29 319 [25] Ablowitz M J and Musslimani Z H 2016 Stud. Appl. Math.139 7 [26] Lou S Y and Huang F 2017 Sci. Rep.7 869 [27] Gerdjikov V S and Saxena A 2017 J. Math. Phys.58 013502 [28] Song C Q, Xiao D M and Zhu Z N 2017 J. Phys. Soc. Jpn.86 054001 [29] Yang B and Yang J K 2018 Stud. Appl. Math.140 178 [30] Zhou Z X 2018 Stud. Appl. Math.141 186 [31] Ablowitz M J, Feng B F, Luo X D and Musslimani Z H 2018 Stud. Appl. Math.141 267 [32] Chen K, Deng X, Lou S Y and Zhang D J 2018 Stud. Appl. Math.141 113 [33] Chen K and Zhang D J 2018 Appl. Math. Lett.75 82 [34] Deng X, Lou S Y and Zhang D J 2018 Appl. Math. Comput.332 477 [35] Gürses M and Pekcan A 2018 J. Math. Phys.59 051501 [36] Yang J 2018 Phys. Rev. E98 042202 [37] Ablowitz M J and Musslimani Z H 2019 J. Phys. A: Math. Theor.52 15 [38] Yang B and Yang J K 2019 Lett. Math. Phys.109 945 [39] Feng W and Zhao S L 2019 Rep. Math. Phys.84 75 [40] Lou S Y 2019 Stud. Appl. Math.143 123 [41] Chen K, Liu S M and Zhang D J 2019 Appl. Math. Lett.88 360 [42] Liu S M, Wu H and Zhang D J 2020 Rep. Math. Phys.86 271 [43] Zhang D D, van der Kamp P H and Zhang D J 2020 Symmetry Integrability Geom.: Meth. Appl. (SIGMA)16 060 [44] Lou S Y 2020 Commun. Theor. Phys.72 057001 [45] Ablowitz M J, Luo X D and Musslimani Z H 2020 Nonlinearity33 3653 [46] Rao J G, Cheng Y, Porsezian K, Mihalache D and He J S 2020 Physica D401 132180 [47] Matveev V B and Smirnov A O 2020 Theor. Math. Phys.204 1154 [48] Zhang G Q and Yan Z Y 2020 Physica D402 132170 [49] Rybalko Y and Shepelsky D 2021 J. Diff. Equ.270 694 [50] Rybalko Y and Shepelsky D 2021 Commun. Math. Phys.382 87 [51] Liu S Z, Wang J and Zhang D J 2022 Stud. Appl. Math.148 651 [52] Liu Y K and Li B 2017 Chin. Phys. Lett.34 010202 [53] Lou S Y 2020 Acta Phys. Sin.69 010503 (in Chinese) [54] Song C Q and Zhu Z N 2020 Acta Phys. Sin.69 010204 (in Chinese) [55] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B29 100501 [56] Ablowitz M J and Musslimani Z H 2021 Phys. Lett. A409 127516 [57] Zhang D J, Ji J and Zhao S L 2009 Physica D238 2361 [58] Zhao S L, Zhang D J and Ji J 2010 Chin. Phys. Lett.27 020201 [59] Hirota R 1974 Prog. Theor. Phys.52 1498 [60] Shi Y, Shen S F and Zhao S L 2019 Nonlinear Dyn.95 1257 [61] Wang J, Wu H and Zhang D J 2020 Commun. Theor. Phys.72 045002 [62] Wang J and Wu H 2022 Commun. Nonlinear Sci. Numer. Simul.104 106052 [63] Liu S M, Wang J and Zhang D J 2022 Rep. Math. Phys.89 199 [64] Gürses M and Pekcan A 2022 Phys. Lett. A422 127793
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.