Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094202    DOI: 10.1088/1674-1056/ac6331
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems

Xiao-Gang Wang(汪小刚)1,2,† and Hao-Yu Wei(魏浩宇)2
1 Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
2 Department of Optical Engineering, Zhejiang A&F University, Hangzhou 311300, China
Abstract  The two types of nonlinear optical cryptosystems (NOCs) that are respectively based on amplitude-phase retrieval algorithm (APRA) and phase retrieval algorithm (PRA) have attracted a lot of attention due to their unique mechanism of encryption process and remarkable ability to resist common attacks. In this paper, the securities of the two types of NOCs are evaluated by using a deep-learning (DL) method, where an end-to-end densely connected convolutional network (DenseNet) model for cryptanalysis is developed. The proposed DL-based method is able to retrieve unknown plaintexts from the given ciphertexts by using the trained DenseNet model without prior knowledge of any public or private key. The results of numerical experiments with the DenseNet model clearly demonstrate the validity and good performance of the proposed the DL-based attack on NOCs.
Keywords:  optical encryption      nonlinear optical cryptosystem      deep learning      phase retrieval algorithm  
Received:  27 December 2021      Revised:  16 March 2022      Accepted manuscript online:  01 April 2022
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Kq (Fourier optics)  
  42.30.Rx (Phase retrieval)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975185 and 61575178), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19F030004), and the Scientific Research and Development Fund of Zhejiang University of Science and Technology, China (Grant No. F701108L03).
Corresponding Authors:  Xiao-Gang Wang     E-mail:  wxg1201@163.com

Cite this article: 

Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇) Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems 2022 Chin. Phys. B 31 094202

[1] Chen W, Javidi B and Chen X 2014 Adv. Opt. Photon. 6 120
[2] Wang S Q, Meng X F, Wang Y R, Yin Y K and Yang X L 2018 Chin. Phys. B 28 084203
[3] Refregier P and Javidi B 1995 Opt. Lett. 20 767
[4] Situ G H and Zhang J J 2004 Opt. Lett. 29 1584
[5] Liu Z J and Liu S T 2007 Opt. Commun. 275 324
[6] Abuturab M R 2013 Opt. Lasers Eng. 51 317
[7] Hua L L, Xu N and Yang G 2014 Chin. Phys. B 23 064201
[8] Zhou N R, Dong T J and Wu J H 2010 Opt. Commun. 283 3037
[9] Yuan S, Yang Y R, Liu X M, Zhou X and Wei Z Z 2018 Opt. Lasers Eng. 100 105
[10] Li T and Shi Y S 2017 Chin. Phys. Lett. 34 034203
[11] Wei H Y and Wang X G 2021 Opt. Laser Technol. 142 107257
[12] Chen J X, Zhang Y, Li J C and Zhang L B 2018 Opt. Lasers Eng. 101 51
[13] Sui L S, Duan K K and Liang J L 2015 Opt. Commun. 343 140
[14] Xiong Y, Du J and Quan C 2020 Opt. Lasers Eng. 134 106289
[15] Wang Q, Xiong D, Alfalou A and Brosseau C 2019 Opt. Commun. 415 56
[16] Qu G, Meng X F, Yang X L, Wu H Z, Wang P W, He W Q and Chen H Y 2021 Opt. Lasers Eng. 137 106376
[17] Zhang Y D and Zhao S M 2017 Chin. Phys. B 26 054205
[18] Wang Y, Liu Q, Wang J and Wang Q H 2018 Chin. Phys. B 27 034202
[19] Gan W W, Chen L F and Liu Y Q 2021 Opt. Commun. 482 126609
[20] Zhang L H, Zhang Z S, Ye H L, Wang Z R, Wang K M and Zhang D W 2020 Appl. Phys. B 126 251
[21] Shan M G, Liu L, Liu B and Zhong Z 2021 Opt. Lasers Eng. 145 106662
[22] Lv W J, Sun X K, Yang D Y, Zhu Y P and Shi Y S 2021 Opt. Lasers Eng. 141 106574
[23] Liu H C and Chen W 2020 Opt. Lasers Eng. 130 106094
[24] Zhou L N, Xiao Y and Chen W 2020 Opt. Lett. 45 5279
[25] Zhang L H, Xiong R, Chen J and Zhang D W 2019 Appl. Phys. B 126 704
[26] Carnicer A, Montes-Usategui M, Arcos S and Juvells I 2005 Opt. Lett. 30 1644
[27] Peng X, Wei H Z and Zhang P 2006 Opt. Lett. 31 3261
[28] Peng X, Zhang P, Wei H Z and Yu B 2006 Opt. Lett. 31 1044
[29] Jiao S M, Li G W, Zhou C Y, Zou W B and Li X 2018 J. Opt. Soc. 35 A1
[30] Hai H, Pan S X, Liao M H, Lu D J, He W Q and Peng X 2019 Opt. Express 27 21204
[31] Zhou L N, Xiao Y and Chen W 2019 Opt. Express 27 26143
[32] Chen L F, Peng B Y, Gan W W and Liu Y Q 2020 Opt. Express 28 28154
[33] Qin W and Peng X 2010 Opt. Lett. 35 118
[34] Wang X G and Zhao D M 2012 Opt. Commun. 285 1078
[35] Wang X G and Zhao D M 2013 Opt. Lett. 38 3684
[36] Fatima A, Mehra I and Nishchal N K 2016 J. Opt. 18 085701
[37] Chen H, Tanougast C, Liu Z J and Sieler L 2017 Opt. Lasers Eng. 93 1
[38] Wang Y, Quan C and Tay C J 2016 Appl. Opt. 55 679
[39] He W Q, Pan S X, Liao M H, Lu D J, Xing Q and Peng X 2021 Opt. Lasers Eng. 138 106415
[40] Liu W, Liu Z J and Liu S T 2013 Opt. Lett. 38 1651
[41] Rajput S K and Nishchal N K 2014 Appl. Opt. 53 418
[42] Badrinarayanan V, Kendall A and Cipolla R 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 2481
[43] Huang G, Liu S, van der Maaten L and Weinberger K Q 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA, p. 2752
[44] Mao X J, Shen C and Yang Y B 2016 arXiv:1603.09056
[45] Xiao H, Rasul K and Vollgraf R 2017 arXiv:1708.07747
[1] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[2] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[3] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[4] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[5] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[6] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[7] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[8] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[9] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[10] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[11] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[12] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[13] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[14] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[15] Optical encryption scheme based on ghost imaging with disordered speckles
Yu-dong Zhang(张玉东), Sheng-mei Zhao(赵生妹). Chin. Phys. B, 2017, 26(5): 054205.
No Suggested Reading articles found!