Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010304    DOI: 10.1088/1674-1056/ac7454
GENERAL Prev   Next  

Transformation relation between coherence and entanglement for two-qubit states

Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳)
School of Physics&Optoelectronics Engineering, Anhui University, Hefei 230601, China
Abstract  Entanglement and coherence are two important resources in quantum information theory. A question naturally arises: Is there some connection between them? We prove that the entanglement of formation and the first-order coherence of two-qubit states satisfy an inequality relation. Two-qubit pure state reaches the upper bound of this inequality. A large number of randomly generated states are used to intuitively verify the complementarity between the entanglement of formation and the first-order coherence. We give the maximum accessible coherence of two-qubit states. Our research results will provide a reliable theoretical basis for conversion of the two quantum resources.
Keywords:  entanglement      coherence      first-order coherence      entanglement of formation  
Received:  30 March 2022      Revised:  23 May 2022      Accepted manuscript online:  29 May 2022
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: This work was supported by the National Science Foundation of China (Grant Nos. 12175001 and 12075001) and the Natural Science Foundation of Education Department of Anhui Province, China (Grant No. KJ2016SD49).
Corresponding Authors:  Liu Ye     E-mail:  yeliu@ahu.edu.cn

Cite this article: 

Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳) Transformation relation between coherence and entanglement for two-qubit states 2023 Chin. Phys. B 32 010304

[1] Schrödinger E 1935 Proc. Cambridge Philos. Soc. 31 555
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[5] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[6] Uhlmann A 2000 Phys. Rev. A 62 032307
[7] Peres A 1996 Phys. Rev. Lett. 77 1413
[8] Piani M 2009 Phys. Rev. Lett. 103 160504
[9] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[10] Mintert F, Kus M and Buchleitner A 2005 Phys. Rev. Lett. 95 260502
[11] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
[12] Fei S M, Zhao M J, Chen K and Wang Z X 2009 Phys. Rev. A 80 032320
[13] Li M and Fei S M 2012 Phys. Rev. A 85 014304
[14] Glauber and Roy J 1963 Phys. Rev. 130 2529
[15] Chin A W, Prior J, Rosenbach R, Caycedo-Soler F, Huelga S F and Plenio M B 2013 Nat. Phys. 9 113
[16] Lloyd S 2011 Phys. Conf. Ser. 302 012037
[17] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
[18] Huelga S F, Plenio M B 2013 Contemp. Phys. 54 181
[19] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[20] Winter A, Yang D 2016 Phys. Rev. Lett. 116 120404
[21] Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402
[22] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
[23] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[24] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[25] Svozilik J, Valles A, Perina J and Torres J P 2015 Phys. Rev. Lett. 115 220501
[26] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[27] Singh U, Bera M N, Dhar H S and Pati A K 2015 Phys. Rev. A 91 052115
[28] Xi Z J, Li Y M and Fan H 2015 Sci. Rep. 5 10922
[29] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[30] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[31] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[32] Napoli C, Bromley T R, Cianciaruso M, Pinai M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[33] Cernoch A, Bartkiewicz K, Lemr K and Soubusta J 2016 Phys. Rev. A 97 042305
[34] Bruschi D E, Sabin C and Paraoanu G S 2017 Phys. Rev. A 95 062324
[35] Bennett C H, DiVincenzo D P, Smolin J, Wootters W K 1996 Phys. Rev. A 54 3824
[36] Mandel L, Wolf E and Shapiro J H 1996 Phys. Today 49 68
[37] Fan X G, Sun W Y and Ding Z Y, et al. 2019 New J. Phys. 21 093053
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[12] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[15] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
No Suggested Reading articles found!