|
|
Transformation relation between coherence and entanglement for two-qubit states |
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳)† |
School of Physics&Optoelectronics Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract Entanglement and coherence are two important resources in quantum information theory. A question naturally arises: Is there some connection between them? We prove that the entanglement of formation and the first-order coherence of two-qubit states satisfy an inequality relation. Two-qubit pure state reaches the upper bound of this inequality. A large number of randomly generated states are used to intuitively verify the complementarity between the entanglement of formation and the first-order coherence. We give the maximum accessible coherence of two-qubit states. Our research results will provide a reliable theoretical basis for conversion of the two quantum resources.
|
Received: 30 March 2022
Revised: 23 May 2022
Accepted manuscript online: 29 May 2022
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: This work was supported by the National Science Foundation of China (Grant Nos. 12175001 and 12075001) and the Natural Science Foundation of Education Department of Anhui Province, China (Grant No. KJ2016SD49). |
Corresponding Authors:
Liu Ye
E-mail: yeliu@ahu.edu.cn
|
Cite this article:
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳) Transformation relation between coherence and entanglement for two-qubit states 2023 Chin. Phys. B 32 010304
|
[1] Schrödinger E 1935 Proc. Cambridge Philos. Soc. 31 555 [2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 [3] Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [4] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902 [5] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [6] Uhlmann A 2000 Phys. Rev. A 62 032307 [7] Peres A 1996 Phys. Rev. Lett. 77 1413 [8] Piani M 2009 Phys. Rev. Lett. 103 160504 [9] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608 [10] Mintert F, Kus M and Buchleitner A 2005 Phys. Rev. Lett. 95 260502 [11] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022 [12] Fei S M, Zhao M J, Chen K and Wang Z X 2009 Phys. Rev. A 80 032320 [13] Li M and Fei S M 2012 Phys. Rev. A 85 014304 [14] Glauber and Roy J 1963 Phys. Rev. 130 2529 [15] Chin A W, Prior J, Rosenbach R, Caycedo-Soler F, Huelga S F and Plenio M B 2013 Nat. Phys. 9 113 [16] Lloyd S 2011 Phys. Conf. Ser. 302 012037 [17] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885 [18] Huelga S F, Plenio M B 2013 Contemp. Phys. 54 181 [19] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [20] Winter A, Yang D 2016 Phys. Rev. Lett. 116 120404 [21] Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402 [22] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124 [23] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402 [24] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 [25] Svozilik J, Valles A, Perina J and Torres J P 2015 Phys. Rev. Lett. 115 220501 [26] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 [27] Singh U, Bera M N, Dhar H S and Pati A K 2015 Phys. Rev. A 91 052115 [28] Xi Z J, Li Y M and Fan H 2015 Sci. Rep. 5 10922 [29] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 [30] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404 [31] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402 [32] Napoli C, Bromley T R, Cianciaruso M, Pinai M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 [33] Cernoch A, Bartkiewicz K, Lemr K and Soubusta J 2016 Phys. Rev. A 97 042305 [34] Bruschi D E, Sabin C and Paraoanu G S 2017 Phys. Rev. A 95 062324 [35] Bennett C H, DiVincenzo D P, Smolin J, Wootters W K 1996 Phys. Rev. A 54 3824 [36] Mandel L, Wolf E and Shapiro J H 1996 Phys. Today 49 68 [37] Fan X G, Sun W Y and Ding Z Y, et al. 2019 New J. Phys. 21 093053 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|