Abstract The knowledge of interfacial thermal conductance (ITC) is key to understand thermal transport in nanostructures. The non-equilibrium molecular dynamics (NEMD) simulation is a useful tool to calculate the ITC. In this study, we investigate the impact of thermostat on the prediction of the ITC. The Langevin thermostat is found to result in larger ITC than the Nose-Hoover thermostat. In addition, the results from NEMD simulations with the Nose-Hoover thermostat exhibit strong size effect of thermal reservoirs. Detailed spectral heat flux decomposition and modal temperature calculation reveal that the acoustic phonons in hot and cold thermal reservoirs are of smaller temperature difference than optical phonons when using the Nose-Hoover thermostat, while phonons in the Langevin thermostat are of identical temperatures. Such a non-equilibrium state of phonons in the case of the Nose-Hoover thermostat reduces the heat flux of low-to-middle-frequency phonons. We also discuss how enlarging the reservoirs or adding an epitaxial rough wall to the reservoirs affects the predicted ITC, and find that these attempts could help to thermalize the phonons, but still underestimate the heat flux from low-frequency phonons.
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤) Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations 2022 Chin. Phys. B 31 056301
[1] Pop E 2010 Nano Res.3 147 [2] Cahill D G, Ford W K, Goodson K E et al. 2003 J. Appl. Phys.93 793 [3] Cahill D G, Braun P V, Chen G et al. 2014 Appl. Phys. Rev.1 011305 [4] Swartz E T and Pohl R O 1989 Rev. Mod. Phys.61 605 [5] Pollack G L 1969 Rev. Mod. Phys.41 48 [6] Swartz E T and Pohl R O 1987 Appl. Phys. Lett.51 2200 [7] Lee S M and Cahill D G 1997 J. Appl. Phys.81 2590 [8] Park J J and Taya M 2006 J. Electron. Pack.128 46 [9] Stevens R J, Smith A N and Norris P M 2005 J. Heat Transfer127 315 [10] Mak K F, Lui C H and Heinz T F 2010 Appl. Phys. Lett.97 221904 [11] Cheaito R, Polanco C A, Addamane S et al. 2018 Phys. Rev. B97 085306 [12] Cheng Z, Koh Y R, Ahmad H et al. 2020 Commun. Phys.3 115 [13] Liu D, Xie R, Yang N et al. 2014 Nano Lett.14 806 [14] Imry Y and Landauer R 1999 Rev. Mod. Phys.71 S306 [15] Chen G 2005 Nanoscale energy transport and conversion: A parallel treatment of electrons, molecules, phonons, and photons (New York: Oxford University Press) [16] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B65 144306 [17] Landry E S and McGaughey A J H 2009 Phys. Rev. B80 165304 [18] Termentzidis K, Chantrenne P and Keblinski P 2009 Phys. Rev. B79 214307 [19] Chalopin Y, Esfarjani K, Henry A et al. 2012 Phys. Rev. B85 195302 [20] Shiomi J 2014 Ann. Rev. Heat Transfer17 177 [21] Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett.80 2484 [22] Mingo N and Yang L 2003 Phys. Rev. B68 245406 [23] Zhang W, Fisher T S and Mingo N 2007 J. Heat Transfer129 483 [24] Li X B and Yang R G 2012 Phys. Rev. B86 054305 [25] Tian Z T, Esfarjani K and Chen G 2012 Phys. Rev. B86 235304 [26] Cheaito R, Gaskins J T, Caplan M E et al. 2015 Phys. Rev. B91 035432 [27] Lyeo H K and Cahill D G 2006 Phys. Rev. B73 144301 [28] Hopkins P E, Duda J C and Norris P M 2011 J. Heat Transfer133 062401 [29] Sääskilahti K, Oksanen J, Tulkki J et al. 2014 Phys. Rev. B90 134312 [30] Wu X F and Luo T F 2014 J. Appl. Phys.115 014901 [31] Zhou Y G and Hu M 2017 Phys. Rev. B95 115313 [32] Feng T L, Zhong Y, Shi J J et al. 2019 Phys. Rev. B99 045301 [33] Maassen J and Askarpour V 2019 APL Mater.7 013203 [34] Liang Z and Keblinski P 2014 Phys. Rev. B90 075411 [35] Ladd A J C and Hoover W G 1983 Phys. Rev. B28 1756 [36] Nos S 1984 J. Chem. Phys.81 511 [37] Dhar A 2008 Adv. Phys.57 457 [38] Fillipov A et al. 1998 J. Phys. A: Math. Gen.31 7719 [39] Chen J, Zhang G and Li B 2010 J. Phys. Soc. Jpn.79 074604 [40] Li Z, Xiong S, Sievers C et al. 2019 J. Chem. Phys.151 234105 [41] Hu Y, Feng T L, Gu X K et al. 2020 Phys. Rev. B101 155308 [42] Barisik M and Beskok A 2012 Journal of Computational Physics231 7881 [43] Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett.113 065901 [44] Fan Z Y, Siro T and Harju A 2013 Computer Physics Communications184 1414 [45] Zhao H and Freund J B 2005 J. Appl. Phys.97 024903 [46] Landry E S and McGaughey A J H 2009 Phys. Rev. B79 075316 [47] Tao Y, Liu C H, Chen W Y et al. 2017 Phys. Lett. A381 1899 [48] Tersoff J 1989 Phys. Rev. B39 5566 [49] Kundu A, Mingo N, Broido D A et al. 2011 Phys. Rev. B84 125426 [50] Sellan D P, Landry E S, Turney J E et al. 2010 Phys. Rev. B81 214305 [51] Tenenbaum A, Ciccotti G and Gallico R 1982 Phys. Rev. A25 2778 [52] Fan Z Y, Pereira L F C, Hirvonen P et al. 2017 Phys. Rev. B95 144309 [53] Narayan O and Young A Y 2009 Phys. Rev. E80 011107 [54] Sääskilahti K, Oksanen J, Volz S et al. 2015 Phys. Rev. B91 115426 [55] Feng T L, Yao W J, Wang Z Y et al. 2017 Phys. Rev. B95 195202 [56] Gordiz K and Henry A 2016 Sci. Rep.6 23139
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.