Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056301    DOI: 10.1088/1674-1056/ac4238
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations

Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤)
Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  The knowledge of interfacial thermal conductance (ITC) is key to understand thermal transport in nanostructures. The non-equilibrium molecular dynamics (NEMD) simulation is a useful tool to calculate the ITC. In this study, we investigate the impact of thermostat on the prediction of the ITC. The Langevin thermostat is found to result in larger ITC than the Nose-Hoover thermostat. In addition, the results from NEMD simulations with the Nose-Hoover thermostat exhibit strong size effect of thermal reservoirs. Detailed spectral heat flux decomposition and modal temperature calculation reveal that the acoustic phonons in hot and cold thermal reservoirs are of smaller temperature difference than optical phonons when using the Nose-Hoover thermostat, while phonons in the Langevin thermostat are of identical temperatures. Such a non-equilibrium state of phonons in the case of the Nose-Hoover thermostat reduces the heat flux of low-to-middle-frequency phonons. We also discuss how enlarging the reservoirs or adding an epitaxial rough wall to the reservoirs affects the predicted ITC, and find that these attempts could help to thermalize the phonons, but still underestimate the heat flux from low-frequency phonons.
Keywords:  interfacial thermal conductance      phonon transport      molecular dynamics  
Received:  07 October 2021      Revised:  23 November 2021      Accepted manuscript online: 
PACS:  63.20.-e (Phonons in crystal lattices)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
Fund: X.G.acknowledges the support from the National Natural Science Foundation of China (Grant No.51706134).
Corresponding Authors:  Xiaokun Gu,E-mail:xiaokun.gu@sjtu.edu.cn     E-mail:  xiaokun.gu@sjtu.edu.cn
About author:  2021-12-11

Cite this article: 

Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤) Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations 2022 Chin. Phys. B 31 056301

[1] Pop E 2010 Nano Res. 3 147
[2] Cahill D G, Ford W K, Goodson K E et al. 2003 J. Appl. Phys. 93 793
[3] Cahill D G, Braun P V, Chen G et al. 2014 Appl. Phys. Rev. 1 011305
[4] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[5] Pollack G L 1969 Rev. Mod. Phys. 41 48
[6] Swartz E T and Pohl R O 1987 Appl. Phys. Lett. 51 2200
[7] Lee S M and Cahill D G 1997 J. Appl. Phys. 81 2590
[8] Park J J and Taya M 2006 J. Electron. Pack. 128 46
[9] Stevens R J, Smith A N and Norris P M 2005 J. Heat Transfer 127 315
[10] Mak K F, Lui C H and Heinz T F 2010 Appl. Phys. Lett. 97 221904
[11] Cheaito R, Polanco C A, Addamane S et al. 2018 Phys. Rev. B 97 085306
[12] Cheng Z, Koh Y R, Ahmad H et al. 2020 Commun. Phys. 3 115
[13] Liu D, Xie R, Yang N et al. 2014 Nano Lett. 14 806
[14] Imry Y and Landauer R 1999 Rev. Mod. Phys. 71 S306
[15] Chen G 2005 Nanoscale energy transport and conversion: A parallel treatment of electrons, molecules, phonons, and photons (New York: Oxford University Press)
[16] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[17] Landry E S and McGaughey A J H 2009 Phys. Rev. B 80 165304
[18] Termentzidis K, Chantrenne P and Keblinski P 2009 Phys. Rev. B 79 214307
[19] Chalopin Y, Esfarjani K, Henry A et al. 2012 Phys. Rev. B 85 195302
[20] Shiomi J 2014 Ann. Rev. Heat Transfer 17 177
[21] Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett. 80 2484
[22] Mingo N and Yang L 2003 Phys. Rev. B 68 245406
[23] Zhang W, Fisher T S and Mingo N 2007 J. Heat Transfer 129 483
[24] Li X B and Yang R G 2012 Phys. Rev. B 86 054305
[25] Tian Z T, Esfarjani K and Chen G 2012 Phys. Rev. B 86 235304
[26] Cheaito R, Gaskins J T, Caplan M E et al. 2015 Phys. Rev. B 91 035432
[27] Lyeo H K and Cahill D G 2006 Phys. Rev. B 73 144301
[28] Hopkins P E, Duda J C and Norris P M 2011 J. Heat Transfer 133 062401
[29] Sääskilahti K, Oksanen J, Tulkki J et al. 2014 Phys. Rev. B 90 134312
[30] Wu X F and Luo T F 2014 J. Appl. Phys. 115 014901
[31] Zhou Y G and Hu M 2017 Phys. Rev. B 95 115313
[32] Feng T L, Zhong Y, Shi J J et al. 2019 Phys. Rev. B 99 045301
[33] Maassen J and Askarpour V 2019 APL Mater. 7 013203
[34] Liang Z and Keblinski P 2014 Phys. Rev. B 90 075411
[35] Ladd A J C and Hoover W G 1983 Phys. Rev. B 28 1756
[36] Nos S 1984 J. Chem. Phys. 81 511
[37] Dhar A 2008 Adv. Phys. 57 457
[38] Fillipov A et al. 1998 J. Phys. A: Math. Gen. 31 7719
[39] Chen J, Zhang G and Li B 2010 J. Phys. Soc. Jpn. 79 074604
[40] Li Z, Xiong S, Sievers C et al. 2019 J. Chem. Phys. 151 234105
[41] Hu Y, Feng T L, Gu X K et al. 2020 Phys. Rev. B 101 155308
[42] Barisik M and Beskok A 2012 Journal of Computational Physics 231 7881
[43] Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett. 113 065901
[44] Fan Z Y, Siro T and Harju A 2013 Computer Physics Communications 184 1414
[45] Zhao H and Freund J B 2005 J. Appl. Phys. 97 024903
[46] Landry E S and McGaughey A J H 2009 Phys. Rev. B 79 075316
[47] Tao Y, Liu C H, Chen W Y et al. 2017 Phys. Lett. A 381 1899
[48] Tersoff J 1989 Phys. Rev. B 39 5566
[49] Kundu A, Mingo N, Broido D A et al. 2011 Phys. Rev. B 84 125426
[50] Sellan D P, Landry E S, Turney J E et al. 2010 Phys. Rev. B 81 214305
[51] Tenenbaum A, Ciccotti G and Gallico R 1982 Phys. Rev. A 25 2778
[52] Fan Z Y, Pereira L F C, Hirvonen P et al. 2017 Phys. Rev. B 95 144309
[53] Narayan O and Young A Y 2009 Phys. Rev. E 80 011107
[54] Sääskilahti K, Oksanen J, Volz S et al. 2015 Phys. Rev. B 91 115426
[55] Feng T L, Yao W J, Wang Z Y et al. 2017 Phys. Rev. B 95 195202
[56] Gordiz K and Henry A 2016 Sci. Rep. 6 23139
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[14] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[15] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
No Suggested Reading articles found!