CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations |
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤)† |
Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract The knowledge of interfacial thermal conductance (ITC) is key to understand thermal transport in nanostructures. The non-equilibrium molecular dynamics (NEMD) simulation is a useful tool to calculate the ITC. In this study, we investigate the impact of thermostat on the prediction of the ITC. The Langevin thermostat is found to result in larger ITC than the Nose-Hoover thermostat. In addition, the results from NEMD simulations with the Nose-Hoover thermostat exhibit strong size effect of thermal reservoirs. Detailed spectral heat flux decomposition and modal temperature calculation reveal that the acoustic phonons in hot and cold thermal reservoirs are of smaller temperature difference than optical phonons when using the Nose-Hoover thermostat, while phonons in the Langevin thermostat are of identical temperatures. Such a non-equilibrium state of phonons in the case of the Nose-Hoover thermostat reduces the heat flux of low-to-middle-frequency phonons. We also discuss how enlarging the reservoirs or adding an epitaxial rough wall to the reservoirs affects the predicted ITC, and find that these attempts could help to thermalize the phonons, but still underestimate the heat flux from low-frequency phonons.
|
Received: 07 October 2021
Revised: 23 November 2021
Accepted manuscript online:
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
68.35.Ja
|
(Surface and interface dynamics and vibrations)
|
|
Fund: X.G.acknowledges the support from the National Natural Science Foundation of China (Grant No.51706134). |
Corresponding Authors:
Xiaokun Gu,E-mail:xiaokun.gu@sjtu.edu.cn
E-mail: xiaokun.gu@sjtu.edu.cn
|
About author: 2021-12-11 |
Cite this article:
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤) Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations 2022 Chin. Phys. B 31 056301
|
[1] Pop E 2010 Nano Res. 3 147 [2] Cahill D G, Ford W K, Goodson K E et al. 2003 J. Appl. Phys. 93 793 [3] Cahill D G, Braun P V, Chen G et al. 2014 Appl. Phys. Rev. 1 011305 [4] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605 [5] Pollack G L 1969 Rev. Mod. Phys. 41 48 [6] Swartz E T and Pohl R O 1987 Appl. Phys. Lett. 51 2200 [7] Lee S M and Cahill D G 1997 J. Appl. Phys. 81 2590 [8] Park J J and Taya M 2006 J. Electron. Pack. 128 46 [9] Stevens R J, Smith A N and Norris P M 2005 J. Heat Transfer 127 315 [10] Mak K F, Lui C H and Heinz T F 2010 Appl. Phys. Lett. 97 221904 [11] Cheaito R, Polanco C A, Addamane S et al. 2018 Phys. Rev. B 97 085306 [12] Cheng Z, Koh Y R, Ahmad H et al. 2020 Commun. Phys. 3 115 [13] Liu D, Xie R, Yang N et al. 2014 Nano Lett. 14 806 [14] Imry Y and Landauer R 1999 Rev. Mod. Phys. 71 S306 [15] Chen G 2005 Nanoscale energy transport and conversion: A parallel treatment of electrons, molecules, phonons, and photons (New York: Oxford University Press) [16] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306 [17] Landry E S and McGaughey A J H 2009 Phys. Rev. B 80 165304 [18] Termentzidis K, Chantrenne P and Keblinski P 2009 Phys. Rev. B 79 214307 [19] Chalopin Y, Esfarjani K, Henry A et al. 2012 Phys. Rev. B 85 195302 [20] Shiomi J 2014 Ann. Rev. Heat Transfer 17 177 [21] Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett. 80 2484 [22] Mingo N and Yang L 2003 Phys. Rev. B 68 245406 [23] Zhang W, Fisher T S and Mingo N 2007 J. Heat Transfer 129 483 [24] Li X B and Yang R G 2012 Phys. Rev. B 86 054305 [25] Tian Z T, Esfarjani K and Chen G 2012 Phys. Rev. B 86 235304 [26] Cheaito R, Gaskins J T, Caplan M E et al. 2015 Phys. Rev. B 91 035432 [27] Lyeo H K and Cahill D G 2006 Phys. Rev. B 73 144301 [28] Hopkins P E, Duda J C and Norris P M 2011 J. Heat Transfer 133 062401 [29] Sääskilahti K, Oksanen J, Tulkki J et al. 2014 Phys. Rev. B 90 134312 [30] Wu X F and Luo T F 2014 J. Appl. Phys. 115 014901 [31] Zhou Y G and Hu M 2017 Phys. Rev. B 95 115313 [32] Feng T L, Zhong Y, Shi J J et al. 2019 Phys. Rev. B 99 045301 [33] Maassen J and Askarpour V 2019 APL Mater. 7 013203 [34] Liang Z and Keblinski P 2014 Phys. Rev. B 90 075411 [35] Ladd A J C and Hoover W G 1983 Phys. Rev. B 28 1756 [36] Nos S 1984 J. Chem. Phys. 81 511 [37] Dhar A 2008 Adv. Phys. 57 457 [38] Fillipov A et al. 1998 J. Phys. A: Math. Gen. 31 7719 [39] Chen J, Zhang G and Li B 2010 J. Phys. Soc. Jpn. 79 074604 [40] Li Z, Xiong S, Sievers C et al. 2019 J. Chem. Phys. 151 234105 [41] Hu Y, Feng T L, Gu X K et al. 2020 Phys. Rev. B 101 155308 [42] Barisik M and Beskok A 2012 Journal of Computational Physics 231 7881 [43] Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett. 113 065901 [44] Fan Z Y, Siro T and Harju A 2013 Computer Physics Communications 184 1414 [45] Zhao H and Freund J B 2005 J. Appl. Phys. 97 024903 [46] Landry E S and McGaughey A J H 2009 Phys. Rev. B 79 075316 [47] Tao Y, Liu C H, Chen W Y et al. 2017 Phys. Lett. A 381 1899 [48] Tersoff J 1989 Phys. Rev. B 39 5566 [49] Kundu A, Mingo N, Broido D A et al. 2011 Phys. Rev. B 84 125426 [50] Sellan D P, Landry E S, Turney J E et al. 2010 Phys. Rev. B 81 214305 [51] Tenenbaum A, Ciccotti G and Gallico R 1982 Phys. Rev. A 25 2778 [52] Fan Z Y, Pereira L F C, Hirvonen P et al. 2017 Phys. Rev. B 95 144309 [53] Narayan O and Young A Y 2009 Phys. Rev. E 80 011107 [54] Sääskilahti K, Oksanen J, Volz S et al. 2015 Phys. Rev. B 91 115426 [55] Feng T L, Yao W J, Wang Z Y et al. 2017 Phys. Rev. B 95 195202 [56] Gordiz K and Henry A 2016 Sci. Rep. 6 23139 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|