Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067302    DOI: 10.1088/1674-1056/26/6/067302

Tunable charge density wave in TiS3 nanoribbons

Ce Huang(黄策)1,2, Enze Zhang(张恩泽)1,2, Xiang Yuan(袁翔)1,2, Weiyi Wang(王伟懿)1,2, Yanwen Liu(刘彦闻)1,2, Cheng Zhang(张成)1,2, Jiwei Ling(凌霁玮)1,2, Shanshan Liu(刘姗姗)1,2, Faxian Xiu(修发贤)1,2,3
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
2 Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China;
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 China

Recently, modifications of charge density wave (CDW) in two-dimensional (2D) show intriguing properties in quasi-2D materials such as layered transition metal dichalcogenides (TMDCs). Optical, electrical transport measurements and scanning tunneling microscopy uncover the enormous difference on the many-body states when the thickness is reduced down to monolayer. However, the CDW in quasi-one-dimensional (1D) materials like transition metal trichalcogenides (TMTCs) is yet to be explored in low dimension whose mechanism is likely distinct from their quasi-2D counterparts. Here, we report a systematic study on the CDW properties of titanium trisulfide (TiS3). Two phase transition temperatures were observed to decrease from 53 K (103 K) to 46 K (85 K) for the bulk and <15-nm thick nanoribbon, respectively, which arises from the increased fluctuation effect across the chain in the nanoribbon structure, thereby destroying the CDW coherence. It also suggests a strong anisotropy of CDW states in quasi-1D TMTCs which is different from that in TMDCs. Remarkably, by using back gate of -30 V~70 V in 15-nm device, we can tune the second transition temperature from 110 K (at -30 V) to 93 K (at 70 V) owing to the altered electron concentration. Finally, the optical approach through the impinging of laser beams on the sample surface is exploited to manipulate the CDW transition, where the melting of the CDW states shows a strong dependence on the excitation energy. Our results demonstrate TiS3 as a promising quasi-1D CDW material and open up a new window for the study of collective phases in TMTCs.

Keywords:  TiS3      two-dimensional material      charge density wave      phase transition  
Received:  29 April 2017      Revised:  04 May 2017      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  

Project supported by the National Young 1000-Talent Plan and the National Natural Science Foundation of China (Grant Nos. 61322407, 11474058, and 61674040).

Corresponding Authors:  Faxian Xiu     E-mail:

Cite this article: 

Ce Huang(黄策), Enze Zhang(张恩泽), Xiang Yuan(袁翔), Weiyi Wang(王伟懿), Yanwen Liu(刘彦闻), Cheng Zhang(张成), Jiwei Ling(凌霁玮), Shanshan Liu(刘姗姗), Faxian Xiu(修发贤) Tunable charge density wave in TiS3 nanoribbons 2017 Chin. Phys. B 26 067302

[1] Grüner G 1988 Rev. Mod. Phys. 60 1129
[2] Wilson J A, Di Salvo F and Mahajan S 1975 Adv. Phys. 24 117
[3] Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W and Feng D 2015 Nat. Nanotechnol. 10 270
[4] Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943
[5] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T and Tsai H Z 2016 Nat. Phys. 12 92
[6] Chatterjee U, Zhao J, Iavarone M, Di Capua R, Castellan J P, Karapetrov G, Malliakas C D, Kanatzidis M G, Claus H, Ruff J P, Weber F, van Wezel J, Campuzano J C, Osborn R, Randeria M, Trivedi N, Norman M R and Rosenkranz S 2015 Nat. Commun. 6 6313
[7] Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Nano 10 765
[8] Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S and Mihailovic D 2014 Science 344 177
[9] Vaskivskyi I, Gospodaric J, Brazovskii S, Svetin D, Sutar P, Goreshnik E, Mihailovic I A, Mertelj T and Mihailovic D 2015 Sci. Adv. 1 e1500168
[10] Hodeau J, Marezio M, Roucau C, Ayroles R, Meerschaut A, Rouxel J and Monceau P 1978 J. Phys. C: Solid State Phys. 11 4117
[11] Monceau P, Ong N, Portis A M, Meerschaut A and Rouxel J 1976 Phys. Rev. Lett. 37 602
[12] Moncton D E, Axe J and DiSalvo F 1977 Phys. Rev. B 16 801
[13] Jin Y, Li X and Yang Y 2015 Phys. Chem. Chem. Phys. 17 18665
[14] Yoshida M, Suzuki R, Zhang Y, Nakano M and Iwasa Y 2015 Sci. Adv. 1 e1500606
[15] Wilson J 1979 Phys. Rev. B 19 6456
[16] Gruner G 2000 Density waves in solids (Westview Press)
[17] errer I, Maciá M, Carcelé V, Ares J and Sáchez C 2012 Energy Procedia 22 48
[18] Dai J and Zeng X C 2015 Angewandte Chemie 127 7682
[19] Island J O, Buscema M, Barawi M, Clamagirand J M, Ares J R, Sánchez C, Ferrer I J, Steele G A, van der Zant H S and Castellanos-Gomez A 2014 Adv. Opt. Mater. 2 641
[20] Wu K, Torun E, Sahin H, Chen B, Fan X, Pant A, Parsons Wright D, Aoki T, Peeters F M, Soignard E and Tongay S 2016 Nat. Commun. 7 12952
[21] Kang J, Sahin H, Ozaydin H D, Senger R T and Peeters F M 2015 Phys. Rev. B 92 075413
[22] Island J O, Biele R, Barawi M, Clamagirand J M, Ares J R, Sanchez C, van der Zant H S, Ferrer I J, D'Agosta R and Castellanos-Gomez A 2015 arXiv: 1510.06889
[23] Gorlova I, Zybtsev S, Pokrovskii V Y, Bolotina N, Verin I and Titov A 2012 Physica B: Conden. Matter 407 1707
[24] Gorlova I, Zybtsev S, Pokrovskii V Y, Bolotina N, Gavrilkin S Y and Tsvetkov A Y 2012 Physica B: Conden. Matter 460 11
[25] Gorlova I, Pokrovskii V Y, Zybtsev S, Titov A and Timofeev V 2010 J. Exp. and Theor. Phys. 111 298
[26] Gorlova I G, Zybtsev S G E and Pokrovskii V Y 2014 JETP Lett. 100 256
[27] Pawbake A S, Island J O, Flores E, Ares J R, Sanchez C, Ferrer I J, Jadkar S R, van der Zant H S, Castellanos-Gomez A and Late D 2015 ACS Appl. Mater. & Interfaces 7 24185
[28] Hsieh P L, Jackson C and Grüer G 1983 Solid State Commun. 46 505
[29] Minakova V, Nasretdinova V and Zaitsev-Zotov S 2015 Physica B: Conden. Matter 460 185
[30] Felser C, Finckh E, Kleinke H, Rocker F and Tremel W 1998 J. Mater. Chem. 8 1787
[31] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[32] Hesse E 1982 IEEE Trans. Instrum. Meas. 1001 166
[33] Barnett C, Kryvchenkova O, Wilson L, Maffeis T, Kalna K and Cobley R 2015 J. Appl. Phys. 117 174306
[34] Bhuiyan A, Martinez A and Esteve D 1988 Thin Solid Films 161 93
[35] Slot E, Holst M, Van der Zant H and Zaitsev-Zotov S 2004 Phys. Rev. Lett. 93 176602
[36] Gorlova I G and Pokrovskii V Y 2009 JETP Lett. 90 295
[37] Li L J, O'Farrell E C T, Loh K P, Eda G, Öyilmaz B and Castro Neto A H 2016 Nature 529 185
[38] Imry Y and Ma S K 1975 Phys. Rev. Lett. 35 1399
[39] Sham L and Patton B R 1976 Phys. Rev. B 13 3151
[40] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[41] Yang J, Wang W, Liu Y, Du H, Ning W, Zheng G, Jin C, Han Y, Wang N and Yang Z 2014 Appl. Phys. Lett. 105 063109
[42] Goli P, Khan J, Wickramaratne D, Lake R K and Balandin A A 2012 Nano Lett. 12 5941
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[6] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
No Suggested Reading articles found!