CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable charge density wave in TiS3 nanoribbons |
Ce Huang(黄策)1,2, Enze Zhang(张恩泽)1,2, Xiang Yuan(袁翔)1,2, Weiyi Wang(王伟懿)1,2, Yanwen Liu(刘彦闻)1,2, Cheng Zhang(张成)1,2, Jiwei Ling(凌霁玮)1,2, Shanshan Liu(刘姗姗)1,2, Faxian Xiu(修发贤)1,2,3 |
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
2 Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China;
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 China |
|
|
Abstract Recently, modifications of charge density wave (CDW) in two-dimensional (2D) show intriguing properties in quasi-2D materials such as layered transition metal dichalcogenides (TMDCs). Optical, electrical transport measurements and scanning tunneling microscopy uncover the enormous difference on the many-body states when the thickness is reduced down to monolayer. However, the CDW in quasi-one-dimensional (1D) materials like transition metal trichalcogenides (TMTCs) is yet to be explored in low dimension whose mechanism is likely distinct from their quasi-2D counterparts. Here, we report a systematic study on the CDW properties of titanium trisulfide (TiS3). Two phase transition temperatures were observed to decrease from 53 K (103 K) to 46 K (85 K) for the bulk and <15-nm thick nanoribbon, respectively, which arises from the increased fluctuation effect across the chain in the nanoribbon structure, thereby destroying the CDW coherence. It also suggests a strong anisotropy of CDW states in quasi-1D TMTCs which is different from that in TMDCs. Remarkably, by using back gate of -30 V~70 V in 15-nm device, we can tune the second transition temperature from 110 K (at -30 V) to 93 K (at 70 V) owing to the altered electron concentration. Finally, the optical approach through the impinging of laser beams on the sample surface is exploited to manipulate the CDW transition, where the melting of the CDW states shows a strong dependence on the excitation energy. Our results demonstrate TiS3 as a promising quasi-1D CDW material and open up a new window for the study of collective phases in TMTCs.
|
Received: 29 April 2017
Revised: 04 May 2017
Accepted manuscript online:
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
Fund: Project supported by the National Young 1000-Talent Plan and the National Natural Science Foundation of China (Grant Nos. 61322407, 11474058, and 61674040). |
Corresponding Authors:
Faxian Xiu
E-mail: Faxian@fudan.edu.cn
|
Cite this article:
Ce Huang(黄策), Enze Zhang(张恩泽), Xiang Yuan(袁翔), Weiyi Wang(王伟懿), Yanwen Liu(刘彦闻), Cheng Zhang(张成), Jiwei Ling(凌霁玮), Shanshan Liu(刘姗姗), Faxian Xiu(修发贤) Tunable charge density wave in TiS3 nanoribbons 2017 Chin. Phys. B 26 067302
|
[1] |
Grüner G 1988 Rev. Mod. Phys. 60 1129
|
[2] |
Wilson J A, Di Salvo F and Mahajan S 1975 Adv. Phys. 24 117
|
[3] |
Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W and Feng D 2015 Nat. Nanotechnol. 10 270
|
[4] |
Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943
|
[5] |
Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T and Tsai H Z 2016 Nat. Phys. 12 92
|
[6] |
Chatterjee U, Zhao J, Iavarone M, Di Capua R, Castellan J P, Karapetrov G, Malliakas C D, Kanatzidis M G, Claus H, Ruff J P, Weber F, van Wezel J, Campuzano J C, Osborn R, Randeria M, Trivedi N, Norman M R and Rosenkranz S 2015 Nat. Commun. 6 6313
|
[7] |
Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Nano 10 765
|
[8] |
Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S and Mihailovic D 2014 Science 344 177
|
[9] |
Vaskivskyi I, Gospodaric J, Brazovskii S, Svetin D, Sutar P, Goreshnik E, Mihailovic I A, Mertelj T and Mihailovic D 2015 Sci. Adv. 1 e1500168
|
[10] |
Hodeau J, Marezio M, Roucau C, Ayroles R, Meerschaut A, Rouxel J and Monceau P 1978 J. Phys. C: Solid State Phys. 11 4117
|
[11] |
Monceau P, Ong N, Portis A M, Meerschaut A and Rouxel J 1976 Phys. Rev. Lett. 37 602
|
[12] |
Moncton D E, Axe J and DiSalvo F 1977 Phys. Rev. B 16 801
|
[13] |
Jin Y, Li X and Yang Y 2015 Phys. Chem. Chem. Phys. 17 18665
|
[14] |
Yoshida M, Suzuki R, Zhang Y, Nakano M and Iwasa Y 2015 Sci. Adv. 1 e1500606
|
[15] |
Wilson J 1979 Phys. Rev. B 19 6456
|
[16] |
Gruner G 2000 Density waves in solids (Westview Press)
|
[17] |
errer I, Maciá M, Carcelé V, Ares J and Sáchez C 2012 Energy Procedia 22 48
|
[18] |
Dai J and Zeng X C 2015 Angewandte Chemie 127 7682
|
[19] |
Island J O, Buscema M, Barawi M, Clamagirand J M, Ares J R, Sánchez C, Ferrer I J, Steele G A, van der Zant H S and Castellanos-Gomez A 2014 Adv. Opt. Mater. 2 641
|
[20] |
Wu K, Torun E, Sahin H, Chen B, Fan X, Pant A, Parsons Wright D, Aoki T, Peeters F M, Soignard E and Tongay S 2016 Nat. Commun. 7 12952
|
[21] |
Kang J, Sahin H, Ozaydin H D, Senger R T and Peeters F M 2015 Phys. Rev. B 92 075413
|
[22] |
Island J O, Biele R, Barawi M, Clamagirand J M, Ares J R, Sanchez C, van der Zant H S, Ferrer I J, D'Agosta R and Castellanos-Gomez A 2015 arXiv: 1510.06889
|
[23] |
Gorlova I, Zybtsev S, Pokrovskii V Y, Bolotina N, Verin I and Titov A 2012 Physica B: Conden. Matter 407 1707
|
[24] |
Gorlova I, Zybtsev S, Pokrovskii V Y, Bolotina N, Gavrilkin S Y and Tsvetkov A Y 2012 Physica B: Conden. Matter 460 11
|
[25] |
Gorlova I, Pokrovskii V Y, Zybtsev S, Titov A and Timofeev V 2010 J. Exp. and Theor. Phys. 111 298
|
[26] |
Gorlova I G, Zybtsev S G E and Pokrovskii V Y 2014 JETP Lett. 100 256
|
[27] |
Pawbake A S, Island J O, Flores E, Ares J R, Sanchez C, Ferrer I J, Jadkar S R, van der Zant H S, Castellanos-Gomez A and Late D 2015 ACS Appl. Mater. & Interfaces 7 24185
|
[28] |
Hsieh P L, Jackson C and Grüer G 1983 Solid State Commun. 46 505
|
[29] |
Minakova V, Nasretdinova V and Zaitsev-Zotov S 2015 Physica B: Conden. Matter 460 185
|
[30] |
Felser C, Finckh E, Kleinke H, Rocker F and Tremel W 1998 J. Mater. Chem. 8 1787
|
[31] |
Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
|
[32] |
Hesse E 1982 IEEE Trans. Instrum. Meas. 1001 166
|
[33] |
Barnett C, Kryvchenkova O, Wilson L, Maffeis T, Kalna K and Cobley R 2015 J. Appl. Phys. 117 174306
|
[34] |
Bhuiyan A, Martinez A and Esteve D 1988 Thin Solid Films 161 93
|
[35] |
Slot E, Holst M, Van der Zant H and Zaitsev-Zotov S 2004 Phys. Rev. Lett. 93 176602
|
[36] |
Gorlova I G and Pokrovskii V Y 2009 JETP Lett. 90 295
|
[37] |
Li L J, O'Farrell E C T, Loh K P, Eda G, Öyilmaz B and Castro Neto A H 2016 Nature 529 185
|
[38] |
Imry Y and Ma S K 1975 Phys. Rev. Lett. 35 1399
|
[39] |
Sham L and Patton B R 1976 Phys. Rev. B 13 3151
|
[40] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[41] |
Yang J, Wang W, Liu Y, Du H, Ning W, Zheng G, Jin C, Han Y, Wang N and Yang Z 2014 Appl. Phys. Lett. 105 063109
|
[42] |
Goli P, Khan J, Wickramaratne D, Lake R K and Balandin A A 2012 Nano Lett. 12 5941
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|