Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067104    DOI: 10.1088/1674-1056/ac6339
RAPID COMMUNICATION Prev   Next  

Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8

Kangqiao Cheng(程康桥)1, Binjie Zhou(周斌杰)1, Cuixiang Wang(王翠香)2,3, Shuo Zou(邹烁)1, Yupeng Pan(潘宇鹏)1, Xiaobo He(何晓波)1, Jian Zhang(张健)1, Fangjun Lu(卢方君)1, Le Wang(王乐)4, Youguo Shi(石友国)2,3,†, and Yongkang Luo(罗永康)1,‡
1 Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue. We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo$_2$Ga$_8$ by electric transport and AC heat capacity measurements. CeCo$_2$Ga$_8$ is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point. Upon compressing the ${c}$ axis, parallel to the Ce-Ce chain, the onset of coherent Kondo effect is enhanced. In contrast, the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along ${a}$ or ${b}$ axis. These results suggest that a tensile intra-chain strain ($\varepsilon_c >0$) pushes CeCo$_2$Ga$_8$ closer to the quantum critical point, while a compressive intra-chain strain ($\varepsilon_c<0$) likely causes departure. Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress, and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.
Keywords:  heavy-fermion compounds      Kondo effect      RKKY interaction      quantum critical point  
Received:  11 February 2022      Revised:  15 February 2022      Accepted manuscript online:  01 April 2022
PACS:  71.20.Eh (Rare earth metals and alloys)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
Fund: Y. Shi acknowledges Beijing Natural Science Foundation, China (Grant No. Z180008) and K. C. Wong Education Foundation (Grant No. GJTD-2018-01).
Corresponding Authors:  Youguo Shi, Yongkang Luo     E-mail:  ygshi@iphy.ac.cn;mpzslyk@gmail.com

Cite this article: 

Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康) Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8 2022 Chin. Phys. B 31 067104

[1] Löhneysen H V, Pfleiderer C, Pietrus T, Stockert O and Will B 2001 Phys. Rev. B 63 134411
[2] Grigera S A, Perry R S, Schofield A J, Chiao M, Julian S R, Lonzarich G G, Ikeda S I, Maeno Y, Millis A J and Mackenzie A P 2001 Science 294 329
[3] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pepin C and Coleman P 2003 Nature 424 524
[4] Park T, Ronning F, Yuan H Q, Salamon M B, Movshovich R, Sarrao J L and Thompson J D 2006 Nature 440 65
[5] Luo Y, Pourovskii L, Rowley S E, Li Y, Feng C, Georges A, Dai J, Cao G, Xu Z, Si Q and Ong N P 2014 Nat. Mater. 11 777
[6] Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z, Pang G, Shang T, Zhang J, Lee H O, Park T, Jaime M, Thompson J D, Steglich F, Si Q and H Q Yuan 2015 Proc. Natl. Acad. Sci. USA 112 673
[7] Ramshaw B J, Sebastian S E, McDonald R D, Day J, Tan B S, Zhu Z, Betts J B, Liang R, Bonn D A, Hardy W N and Harrison N 2015 Science 348 317
[8] Zhao H, Zhang J, Lyu M, Bachus S, Yokiwa Y, Gegenwart P, Zhang S, Cheng J, Yang Y, Chen G, Isikawa Y, Si Q, Steglich F and Sun P 2019 Nat. Phys. 15 1261
[9] Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J and Butch N P 2019 Nat. Phys. 15 1250
[10] Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R,Wang A, Chen Y, Li Z N R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H 2020 Nature 579 51
[11] Worasaran T, Ikeda M S, Palmstrom J C, Straquadine J A W, Kivelson S A and Fisher I R 2021 Science 372 973
[12] Custers J, Lorenzer K A, Müller M, Prokofiev A, Sidorenko A, Winkler H, Strydom A M, Shimura Y, Sakakibara T, Yu R, Si Q and Paschen S 2012 Nat. Mater. 11 189
[13] Luo Y, Ronning F, Wakeham N, Lu X, Park T, Xu Z A and Thompson J D 2015 Proc. Natl. Acad. Sci. USA 112 13520
[14] Fuhrman W T, Sidorenko A, Hänel J, Winkler H, Prokofiev A, Rodriguez-Rivera J A, Qiu Y, Blaha P, Si Q, Broholm C L and Paschen S 2021 Sci. Adv. 7 eabf9134
[15] Doniach S 1977 Physica B+C 91 231
[16] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[17] Kasuya T 1956 Progress of Theoretical Physics 16 45
[18] Yosida K 1957 Phys. Rev. 106 893
[19] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[20] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[21] Steiner M, Villain J and Windsor C 1976 Advances in Physics 25 87
[22] Luttinger J M 1963 J. Math. Phys. 4 1154
[23] Haldane F D M 1981 J. Phys. C: Solid State Phys. 14 2585
[24] Cheng K, Wang L, Xu Y, Yang F, Zhu H, Ke J, Lu X, Xia Z, Wang J, Shi Y, Yang Y and Luo Y 2019 Phys. Rev. Materials 3 021402
[25] Krellner C, Lausberg S, Steppke A, Brando M, Pedrero L, Pfau H, Tencé S, Rosner H, Steglich F and Geibel C 2011 New J. Phys. 13 103014
[26] Lyu M, Zhao H, Zhang J, Wang Z, Zhang S and Sun P 2021 Chin. Phys. B 30 087101
[27] Wang L, Fu Z, Sun J, Liu M, Yi W, Yi C, Luo Y, Dai Y, Liu G, Matsushita Y, Yamaura K, Lu L, Cheng J G, Yang Y F, Shi Y and Luo J 2017 npj Quantum Materials 2 36
[28] Koterlin M D, Morokhivski B S, Lapunova R V and Sichevich O M 1989 Sov. Phys. Solid State 31 1826
[29] Bhattacharyya A, Adroja D T, Lord J S, Wang L, Shi Y, Panda K, Luo H and Strydom A M 2020 Phys. Rev. B 101 214437
[30] Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y and Mackenzie A P 2014 Science 344 283
[31] Wilhelm H 2003 Adv. Solid State Phys. 43 899
[32] Li Y S, Borth R, Hicks C W, Mackenzie A P and Nicklas M 2020 Rev. Sci. Instrum. 91 103903
[33] Köhler U 2007 Thermoelectric Transport in Rare-earth Compounds (Ph. D thesis)
[34] Stockert U and Oeschler N 2011 Cryogenics 51 154
[35] Migliori A and Sarrao J L 1997 Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation (New York: Wiley)
[36] Zhou B, Pan Y, Cheng K, Wang C, Shi Y and Luo Y (In preparation)
[37] Ashcroft N W and Mermin N D 1976 Solid State Physics (Harcourt College Publishers)
[38] Löhneysen H V, Rosch A, Vojta M and Wölfle P 2007 Rev. Mod. Phys. 79 1015
[39] Si Q 2006 Physica B 378–380 23
[40] Hertz J A 1976 Phys. Rev. B 14 1165
[41] Millis A J 1993 Phys. Rev. B 48 7183
[42] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
[43] Coleman P and Schofield A J 2005 Nature 433 226
[44] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[45] Shishido H, Settai R, Harima H and Ōnuki Y 2005 J. Phys. Soc. Jpn. 74 1103
[46] Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2012 Nature 432 881
[47] Schröder A, Aeppli G, Bucher E, Ramazashvili R and Coleman P 1998 Phys. Rev. Lett. 80 5623
[48] Stockert O, Löhneysen H V, Rosch A, Pyka N and Loewenhaupt M 1998 Phys. Rev. Lett. 80 5627
[49] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, Löhneysen H V, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
[50] Stewart G R 2001 Rev. Mod. Phys. 73 797
[51] Moriya T and Takimoto T 1995 J. Phys. Soc. Jpn. 64 960
[52] Zhu L J, Garst M, Rosch A and Si Q M 2003 Phys. Rev. Lett. 91 066404
[1] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[2] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[3] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[4] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[5] Low temperature magnetism in the rare-earth perovskite GdScO3
Jie-Ming Sheng(盛洁明), Xu-Cai Kan(阚绪材), Han Ge(葛晗), Pei-Qian Yuan(袁培骞), Lei Zhang(张磊), Nan Zhao(赵南), Zong-Mei Song(宋宗美), Yuan-Yin Yao(姚远寅), Ji-Ning Tang(唐霁宁), Shan-Min Wang(王善民), Ming-Liang Tian(田明亮), Xin Tong(童欣), Liu-Suo Wu(吴留锁). Chin. Phys. B, 2020, 29(5): 057503.
[6] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[7] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[8] Quantum critical behavior in an antiferromagnetic heavy-fermion Kondo lattice system (Ce1-xLax)2Ir3Ge5
Rajwali Khan, Qianhui Mao(毛乾辉), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Jianhua Du(杜建华), Binjie Xu(许彬杰), Yuxing Zhou(周宇星), Yannan Zhang(张燕楠), Bing Chen(陈斌), Minghu Fang(方明虎). Chin. Phys. B, 2017, 26(1): 017401.
[9] Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces
Song Bo-Qun (宋博群), Pan Li-Da (潘理达), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2013, 22(9): 096801.
[10] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[11] Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行). Chin. Phys. B, 2013, 22(2): 027307.
[12] Transition from the Kondo effect to a Coulomb blockade in an electron shuttle
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁). Chin. Phys. B, 2013, 22(11): 117305.
[13] Multilayer transition in a spin-1 Blume–Capel model with RKKY interaction and quantum transverse anisotropy
N. Tahiri, H. Ez-Zahraouy, and A. Benyoussef. Chin. Phys. B, 2011, 20(1): 017501.
[14] Spin-dependent transport through an interacting quantum dot system
Huang Rui (黄睿), Wu Shao-Quan (吴绍全), Yan Cong-Hua (闫从华). Chin. Phys. B, 2010, 19(7): 077302.
[15] Kondo transport through a quantum dot coupled with side quantum-dot structures
Jiang Zhao-Tan(江兆潭). Chin. Phys. B, 2010, 19(7): 077307.
No Suggested Reading articles found!