|
|
Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8 |
Kangqiao Cheng(程康桥)1, Binjie Zhou(周斌杰)1, Cuixiang Wang(王翠香)2,3, Shuo Zou(邹烁)1, Yupeng Pan(潘宇鹏)1, Xiaobo He(何晓波)1, Jian Zhang(张健)1, Fangjun Lu(卢方君)1, Le Wang(王乐)4, Youguo Shi(石友国)2,3,†, and Yongkang Luo(罗永康)1,‡ |
1 Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue. We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo$_2$Ga$_8$ by electric transport and AC heat capacity measurements. CeCo$_2$Ga$_8$ is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point. Upon compressing the ${c}$ axis, parallel to the Ce-Ce chain, the onset of coherent Kondo effect is enhanced. In contrast, the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along ${a}$ or ${b}$ axis. These results suggest that a tensile intra-chain strain ($\varepsilon_c >0$) pushes CeCo$_2$Ga$_8$ closer to the quantum critical point, while a compressive intra-chain strain ($\varepsilon_c<0$) likely causes departure. Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress, and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.
|
Received: 11 February 2022
Revised: 15 February 2022
Accepted manuscript online: 01 April 2022
|
PACS:
|
71.20.Eh
|
(Rare earth metals and alloys)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.28.+d
|
(Narrow-band systems; intermediate-valence solids)
|
|
Fund: Y. Shi acknowledges Beijing Natural Science Foundation, China (Grant No. Z180008) and K. C. Wong Education Foundation (Grant No. GJTD-2018-01). |
Corresponding Authors:
Youguo Shi, Yongkang Luo
E-mail: ygshi@iphy.ac.cn;mpzslyk@gmail.com
|
Cite this article:
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康) Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8 2022 Chin. Phys. B 31 067104
|
[1] Löhneysen H V, Pfleiderer C, Pietrus T, Stockert O and Will B 2001 Phys. Rev. B 63 134411 [2] Grigera S A, Perry R S, Schofield A J, Chiao M, Julian S R, Lonzarich G G, Ikeda S I, Maeno Y, Millis A J and Mackenzie A P 2001 Science 294 329 [3] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pepin C and Coleman P 2003 Nature 424 524 [4] Park T, Ronning F, Yuan H Q, Salamon M B, Movshovich R, Sarrao J L and Thompson J D 2006 Nature 440 65 [5] Luo Y, Pourovskii L, Rowley S E, Li Y, Feng C, Georges A, Dai J, Cao G, Xu Z, Si Q and Ong N P 2014 Nat. Mater. 11 777 [6] Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z, Pang G, Shang T, Zhang J, Lee H O, Park T, Jaime M, Thompson J D, Steglich F, Si Q and H Q Yuan 2015 Proc. Natl. Acad. Sci. USA 112 673 [7] Ramshaw B J, Sebastian S E, McDonald R D, Day J, Tan B S, Zhu Z, Betts J B, Liang R, Bonn D A, Hardy W N and Harrison N 2015 Science 348 317 [8] Zhao H, Zhang J, Lyu M, Bachus S, Yokiwa Y, Gegenwart P, Zhang S, Cheng J, Yang Y, Chen G, Isikawa Y, Si Q, Steglich F and Sun P 2019 Nat. Phys. 15 1261 [9] Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J and Butch N P 2019 Nat. Phys. 15 1250 [10] Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R,Wang A, Chen Y, Li Z N R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H 2020 Nature 579 51 [11] Worasaran T, Ikeda M S, Palmstrom J C, Straquadine J A W, Kivelson S A and Fisher I R 2021 Science 372 973 [12] Custers J, Lorenzer K A, Müller M, Prokofiev A, Sidorenko A, Winkler H, Strydom A M, Shimura Y, Sakakibara T, Yu R, Si Q and Paschen S 2012 Nat. Mater. 11 189 [13] Luo Y, Ronning F, Wakeham N, Lu X, Park T, Xu Z A and Thompson J D 2015 Proc. Natl. Acad. Sci. USA 112 13520 [14] Fuhrman W T, Sidorenko A, Hänel J, Winkler H, Prokofiev A, Rodriguez-Rivera J A, Qiu Y, Blaha P, Si Q, Broholm C L and Paschen S 2021 Sci. Adv. 7 eabf9134 [15] Doniach S 1977 Physica B+C 91 231 [16] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99 [17] Kasuya T 1956 Progress of Theoretical Physics 16 45 [18] Yosida K 1957 Phys. Rev. 106 893 [19] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) [20] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [21] Steiner M, Villain J and Windsor C 1976 Advances in Physics 25 87 [22] Luttinger J M 1963 J. Math. Phys. 4 1154 [23] Haldane F D M 1981 J. Phys. C: Solid State Phys. 14 2585 [24] Cheng K, Wang L, Xu Y, Yang F, Zhu H, Ke J, Lu X, Xia Z, Wang J, Shi Y, Yang Y and Luo Y 2019 Phys. Rev. Materials 3 021402 [25] Krellner C, Lausberg S, Steppke A, Brando M, Pedrero L, Pfau H, Tencé S, Rosner H, Steglich F and Geibel C 2011 New J. Phys. 13 103014 [26] Lyu M, Zhao H, Zhang J, Wang Z, Zhang S and Sun P 2021 Chin. Phys. B 30 087101 [27] Wang L, Fu Z, Sun J, Liu M, Yi W, Yi C, Luo Y, Dai Y, Liu G, Matsushita Y, Yamaura K, Lu L, Cheng J G, Yang Y F, Shi Y and Luo J 2017 npj Quantum Materials 2 36 [28] Koterlin M D, Morokhivski B S, Lapunova R V and Sichevich O M 1989 Sov. Phys. Solid State 31 1826 [29] Bhattacharyya A, Adroja D T, Lord J S, Wang L, Shi Y, Panda K, Luo H and Strydom A M 2020 Phys. Rev. B 101 214437 [30] Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y and Mackenzie A P 2014 Science 344 283 [31] Wilhelm H 2003 Adv. Solid State Phys. 43 899 [32] Li Y S, Borth R, Hicks C W, Mackenzie A P and Nicklas M 2020 Rev. Sci. Instrum. 91 103903 [33] Köhler U 2007 Thermoelectric Transport in Rare-earth Compounds (Ph. D thesis) [34] Stockert U and Oeschler N 2011 Cryogenics 51 154 [35] Migliori A and Sarrao J L 1997 Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation (New York: Wiley) [36] Zhou B, Pan Y, Cheng K, Wang C, Shi Y and Luo Y (In preparation) [37] Ashcroft N W and Mermin N D 1976 Solid State Physics (Harcourt College Publishers) [38] Löhneysen H V, Rosch A, Vojta M and Wölfle P 2007 Rev. Mod. Phys. 79 1015 [39] Si Q 2006 Physica B 378–380 23 [40] Hertz J A 1976 Phys. Rev. B 14 1165 [41] Millis A J 1993 Phys. Rev. B 48 7183 [42] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804 [43] Coleman P and Schofield A J 2005 Nature 433 226 [44] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186 [45] Shishido H, Settai R, Harima H and Ōnuki Y 2005 J. Phys. Soc. Jpn. 74 1103 [46] Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2012 Nature 432 881 [47] Schröder A, Aeppli G, Bucher E, Ramazashvili R and Coleman P 1998 Phys. Rev. Lett. 80 5623 [48] Stockert O, Löhneysen H V, Rosch A, Pyka N and Loewenhaupt M 1998 Phys. Rev. Lett. 80 5627 [49] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, Löhneysen H V, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351 [50] Stewart G R 2001 Rev. Mod. Phys. 73 797 [51] Moriya T and Takimoto T 1995 J. Phys. Soc. Jpn. 64 960 [52] Zhu L J, Garst M, Rosch A and Si Q M 2003 Phys. Rev. Lett. 91 066404 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|