Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028103    DOI: 10.1088/1674-1056/ac447e
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
SPECIAL TOPIC—Organic and hybrid thermoelectrics Prev   Next  

Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process

Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊)
School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract  The reduced graphene oxide/silver selenide nanowire (rGO/Ag2Se NW) composite powders were fabricated via a wet chemical approach, and then flexible rGO/Ag2Se NW composite film was prepared by a facile vacuum filtration method combined with cold-pressing treatment. A highest power factor of 228.88 μW·m-1·K-2 was obtained at 331 K for the cold-pressed rGO/Ag2Se NW composite film with 0.01 wt% rGO. The rGO/Ag2Se NW composite film revealed superior flexibility as the power factor retained 94.62% after bending for 500 times with a bending radius of 4 mm, which might be due to the interwoven network structures of Ag2Se NWs and pliability of rGO as well as nylon membrane. These results demonstrated that the GO/Ag2Se NW composite film has a potential for preparation of flexible thermoelectric devices.
Keywords:  thermoelectric      silver selenide      reduced graphene oxide      flexibility  
Received:  11 October 2021      Revised:  01 December 2021      Accepted manuscript online:  18 December 2021
PACS:  81.07.Gf (Nanowires)  
  81.05.ue (Graphene)  
Fund: Project supported by the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning (Grant No. TP2020068), Shanghai Innovation Action Plan Project (Grant No. 17090503600), and Shanghai Sailing Program (Grant No. 20YF1447300).
Corresponding Authors:  Yong Du, Qiufeng Meng     E-mail:  ydu@sit.edu.cn;mengqiufeng@sit.edu.cn

Cite this article: 

Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊) Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process 2022 Chin. Phys. B 31 028103

[1] Zong P A, Zhang P, Yin S J, Huang Y J, Wang Y L and Wan C L 2019 Adv. Electron. Mater. 5 1800842
[2] Lv H C, Liang L R, Zhang Y C, Deng L, Chen Z J, Liu Z X, Wang H F and Chen G M 2021 Nano Energy 88 106260
[3] Du Y, Chen J G, Meng Q F, Dou Y C, Xu J Y and Shen S Z 2020 Vacuum 178 109384
[4] Ou C L, Sangle A L, Datta A, Jing Q S, Busolo T, Chalklen T, Narayan V and Kar-Narayan S 2018 ACS Appl. Mater. Interfaces 10 19580
[5] Du Y, Shen S Z, Cai K F and Casey P S 2012 Prog. Polym. Sci. 37 820
[6] Wei Q S, Mukaida M, Kirihara K and Ishida T 2021 Thermoelectric Energy Conversion (Cambridge:Woodhead) pp. 333-345
[7] Cao T Y, Shi X L, Zou J and Chen Z G 2021 Microstructures 1 2021007
[8] Du Y, Xu J Y, Paul B and Eklund P 2018 Appl. Mater. Today 12 366
[9] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[10] Xu S D, Shi X L, Dargusch M, Di C, Zou J and Chen Z G 2021 Prog. Mater. Sci. 121 100840
[11] Kim C S, Lee G S, Choi H, Kim Y J, Yang H M, Lim S H, Lee S G, Cho B J 2018 Appl. Energ. 214 131
[12] Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J and Chen L D 2019 Energ. Environ. Sci. 12 2983
[13] Meng Q F, Song H J, Du Y, Ding Y F and Cai K F 2021 J. Materiomics 7 302
[14] Jia Y H, Jiang Q L, Sun H D, Liu P P, Hu D H, Pei Y Z, Liu W S, Crispin X, Fabiano S, Ma Y G and Cao Y 2021 Adv. Mater. 33 2102990
[15] Xu S D, Hong M, Shi X L, Li M, Sun Q, Chen Q X, Dargusch M, Zou J and Chen Z G 2020 Energ. Environ. Sci. 13 3480
[16] Ding Y F, Qiu Y, Cai K F, Yao Q, Chen S, Chen L D and He J Q 2019 Nat. Commun. 10 841
[17] Lu Y, Qiu Y, Cai K F, Ding Y F, Wang M D, Jiang C, Yao Q, Huang C J, Chen L D and He J Q 2020 Energ. Environ. Sci. 13 1240
[18] Jiang C, Ding Y F, Cai K F, Tong L, Lu Y, Zhao W Y and Wei P 2020 ACS Appl. Mater. Interfaces 12 9646
[19] Jiang C, Wei P, Ding Y F, Cai K F, Tong L, Gao Q, Lu Y, Zhao W Y and Chen S 2021 Nano Energy 80 105488
[20] Park D, Ju H and Kim J 2021 J. Ind. Eng. Chem. 93 333
[21] Liu W D, Yu Y, Dargusch M, Liu Q F and Chen Z G 2021 Renew. Sust. Energ. Rev. 141 110800
[22] Liu X, Du Y, Meng Q F, Shen S Z and Xu J Y 2019 J. Mater. Sci.-Mater. El. 30 20369
[23] Ju H, Kim M and Kim J 2015 Chem. Eng. J. 275 102
[24] Zhou H J, Zhang Z J, Sun C X, Deng H and Fu Q 2020 ACS Appl. Mater. Interfaces 12 51506
[25] Xu S D, Hong M, Li M, Sun Q, Yin Y, Liu W D, Shi X L, Dargusch M, Zou J and Chen Z G 2021 Appl. Phys. Rev. 8 041404
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[10] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[11] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[12] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[13] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[14] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[15] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
No Suggested Reading articles found!