Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 088105    DOI: 10.1088/1674-1056/ac6737
RAPID COMMUNICATION Prev   Next  

Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition

Jia-Jun Ma(马佳俊)1,2,†, Kang Wu(吴康)1,2,†, Zhen-Yu Wang(王振宇)2, Rui-Song Ma(马瑞松)1, Li-Hong Bao(鲍丽宏)1,2,4, Qing Dai(戴庆)3, Jin-Dong Ren(任金东)3,‡, and Hong-Jun Gao(高鸿钧)1,2,4,§
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nano-technology, National Center for Nanoscience and Technology, Beijing 100190, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We report a novel two-step ambient pressure chemical vapor deposition (CVD) pathway to grow high-quality MoS2 monolayer on the SiO2 substrate with large crystal size up to 110 μm. The large specific surface area of the pre-synthesized MoO3 flakes on the mica substrate compared to MoO3 powder could dramatically reduce the consumption of the Mo source. The electronic information inferred from the four-probe scanning tunneling microscope (4P-STM) image explains the threshold voltage variations and the n-type behavior observed in the two-terminal transport measurements. Furthermore, the direct van der Pauw transport also confirms its relatively high carrier mobility. Our study provides a reliable method to synthesize high-quality MoS2 monolayer, which is confirmed by the direct 4P-STM measurement results. Such methodology is a key step toward the large-scale growth of transition metal dichalcogenides (TMDs) on the SiO2 substrate and is essential to further development of the TMDs-related integrated devices.
Keywords:  chemical vapor deposition (CVD)      scanning tunneling microscope (STM)      MoS2      transport  
Received:  23 March 2022      Revised:  11 April 2022      Accepted manuscript online:  14 April 2022
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  07.79.Cz (Scanning tunneling microscopes)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the National Natural Science Foundation of China (Grant No. 12004417), the National Key Research and Development Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), the National Natural Science Foundation of China (Grant No. U2032206), Chinese Academy of Sciences (Grant Nos. XDB36000000, YSBR-003, and 112111KYSB20160061), Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant Nos. XDB30000000 and XDB28000000), Youth Innovation Promotion Association of CAS (Grant No. Y201902), and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003).
Corresponding Authors:  Jin-Dong Ren, Hong-Jun Gao     E-mail:  renjd@nanoctr.cn;hjgao@iphy.ac.cn

Cite this article: 

Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧) Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition 2022 Chin. Phys. B 31 088105

[1] Tsai M Y, Tarasov A, Hesabi Z R, Taghinejad H, Campbell P M, Joiner C A, Adibi A and Vogel E M 2015 ACS Appl. Mater. Inter. 7 12850
[2] Kim S H, Yi S G, Park M U, Lee C, Kim M and Yoo K H 2019 ACS Appl. Mater. Inter. 11 25306
[3] Zheng C, Jin X, Li Y, Mei J, Sun Y, Xiao M, Zhang H, Zhang Z and Zhang G J 2019 Sci. Rep. 9 759
[4] Liu L, Liu C, Jiang L, Li J, Ding Y, Wang S, Jiang Y G, Sun Y B, Wang J, Chen S, Zhang D W and Zhou P 2021 Nat. Nanotechnol. 16 874
[5] Liu F 2021 Prog. Surf. Sci. 96 100626
[6] Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D, Song X, Wu X, Xiong C, Rummeli M H, Ding F, Zhang Y and Liu Z 2015 Adv. Mater. 27 7839
[7] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D and Zhang G 2020 Nano Lett. 20 7193
[8] Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D and Zhang G 2020 Nat. Electron. 3 711
[9] Li B, Ju Q, Hong W, Cai Q, Lin J and Liu W 2021 Ceram. Int. 47 30106
[10] Chen J Y, Liu L, Li C X and Xu J P 2019 Chin. Phys. Lett. 36 037301
[11] Zhou X, Kang K, Xie S, Dadgar A, Monahan N R, Zhu X Y, Park J and Pasupathy A N 2016 Nano Lett. 16 3148
[12] Lu C P, Li G, Mao J, Wang L M and Andrei E Y 2014 Nano Lett. 14 4628
[13] Hill H M, Rigosi A F, Rim K T, Flynn G W and Heinz T F 2016 Nano Lett. 16 4831
[14] Kerelsky A, Nipane A, Edelberg D, Wang D, Zhou X, Motmaendadgar A, Gao H, Xie S, Kang K, Park J, Teherani J and Pasupathy A 2017 Nano Lett. 17 5962
[15] Zhang F, Lu Z, Choi Y, Liu H, Zheng H, Xie L, Park K, Jiao L and Tao C 2018 ACS Appl. Nano Mater. 1 2041
[16] Ma R S, Ma J, Yan J, Wu L, Liu H, Guo W, Wang S, Huan Q, Lin X, Bao L, Pantelides S T and Gao H J 2019 D Mater. 6 045033
[17] Ma R, Huan Q, Wu L, Yan J, Zou Q, Wang A, Bobisch C A, Bao L and Gao H J 2017 Rev. Sci. Instrum. 88 063704
[18] Ge W, Kawahara K, Tsuji M and Ago H 2013 Nanoscale 5 5773
[19] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[20] Yang X, Li Q, Hu G, Wang Z, Yang Z, Liu X, Dong M and Pan C 2016 Sci. China Mater. 59 182
[21] Koós A A, Vancsó P, Magda G Z, Osváth Z, Kertész K, Dobrik G, Hwang C, Tapasztó L and Biró L P 2016 Carbon 105 408
[22] Smithe K K H, English C D, Suryavanshi S V and Pop E 2016 2D Mater. 4 011009
[23] Cui X, Kong Z, Gao E, Huang D, Hao Y, Shen H, Di C A, Xu Z, Zheng J and Zhu D 2018 Nat. Commun. 9 1301
[24] Mallik S K, Sahoo S, Sahu M C, Gupta S K, Dash S P, Ahuja R and Sahoo S 2021 J. Appl. Phys. 129 145106
[25] Zhang J, Yu H, Chen W, Tian X, Liu D, Cheng M, Xie G, Yang W, Yang R, Bai X, Shi D and Zhang G 2014 ACS Nano 8 6024
[26] Chen W, Zhao J, Zhang J, Gu L, Yang Z, Li X, Yu H, Zhu X, Yang R, Shi D, Lin X, Guo J, Bai X and Zhang G 2015 J. Am. Chem. Soc. 137 15632
[27] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554
[28] Wang S, Pacios M, Bhaskaran H and Warner J H 2016 Nanotechnology 27 085604
[29] Lee J, Pak S, Giraud P, Lee Y W, Cho Y, Hong J, Jang A R, Chung H S, Hong W K, Jeong H Y, Shin H S, Occhipinti L G, Morris S M, Cha S, Sohn J I and Kim J M 2017 Adv. Mater. 29 1702206
[30] Hanson E D, Lajaunie L, Hao S, Myers B D, Shi F, Murthy A A, Wolverton C, Arenal R and Dravid V P 2017 Adv. Funct. Mater. 27 1605380
[31] Molina-Mendoza A J, Lado J L, Island J O, Niño M A, Aballe L, Foerster M, Bruno F Y, López-Moreno A, Vaquero-Garzon L, Van Der Zant H S J, Rubio-Bollinger G, Agraït N, Pérez E M, Fernández-Rossier J and Castellanos-Gomez A 2016 Chem. Mater. 28 4042
[32] Fan L, Wang K, Wei J, Zhong M, Wu D and Zhu H 2014 J. Mater. Chem. A 2 13123
[33] Smithe K K H, Suryavanshi S V, Munoz Rojo M, Tedjarati A D and Pop E 2017 ACS Nano 11 8456
[34] Cun H, Macha M, Kim H, Liu K, Zhao Y, Lagrange T, Kis A and Radenovic A 2019 Nano Res. 12 2646
[35] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[36] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801
[37] Miccoli I, Edler F, Pfnur H and Tegenkamp C 2015 J. Phys. Condens. Mat. 27 223201
[38] Voigtlander B, Cherepanov V, Korte S, Leis A, Cuma D, Just S and Lupke F 2018 Rev. Sci. Instrum. 89 101101
[39] Yan J, Ma J, Wang A, Ma R, Wu L, Wu Z, Liu L, Bao L, Huan Q and Gao H J 2021 Rev. Sci. Instrum. 92 103702
[40] Ma R S, Ma J, Yan J, Wu L, Liu H, Guo W, Wang S, Huan Q, Lin X, Bao L, Pantelides S T and Gao H J 2019 2D Mater. 6 045033
[41] Guinea F, Katsnelson M I and Vozmediano M A H 2008 Phys. Rev. B 77 075422
[42] Ma R S, Ma J, Yan J, Wu L, Guo W, Wang S, Huan Q, Bao L, Pantelides S T and Gao H J 2020 Nanoscale 12 12038
[43] Park Y, Baac H W, Heo J and Yoo G 2016 Appl. Phys. Lett. 108 083102
[44] Okogbue E, Kim J H, Ko T J, Chung H S, Krishnaprasad A, Flores J C, Nehate S, Kaium M G, Park J B, Lee S J, Sundaram K B, Zhai L, Roy T and Jung Y 2018 ACS Appl. Mater. Inter. 10 30623
[45] Lembke D, Allain A and Kis A 2015 Nanoscale 7 6255
[46] Xu H, Zhang H, Guo Z, Shan Y, Wu S, Wang J, Hu W, Liu H, Sun Z, Luo C, Wu X, Xu Z, Zhang D W, Bao W and Zhou P 2018 Small 14 1803465
[47] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[48] Dattatray J. Late, Liu B, Dravid H S S R M V P and Rao C N R 2017 ACS Nano 6 5635
[49] Wehling T O, Katsnelson M I and Lichtenstein A I 2009 Chem. Phys. Lett. 476 125
[50] Tang A, Kumar A, Jaikissoon M, Saraswat K, Wong H P and Pop E 2021 ACS Appl. Mater. Inter. 13 41866
[51] Nagashio K, Nishimura T, Kita K and Toriumi A 2010 Jpn. J. Appl. Phys. 49 051304
[52] Van Der Pauw L J 1958 Philips Tech. Rev. 20 220
[53] Van Der Pauw L J 1958 Philips Res. Rep. 13 1
[54] Han G H, Kybert N J, Naylor C H, Lee B S, Ping J, Park J H, Kang J, Lee S Y, Lee Y H, Agarwal R and Johnson A T 2015 Nat. Commun. 6 6128
[55] Sun L, Leong W S, Yang S, Chisholm M F, Liang S J, Ang L K, Tang Y, Mao Y, Kong J and Yang H Y 2017 Adv. Funct. Mater. 27 1605896
[56] Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z and Zhang Y 2018 Nat. Commun. 9 979
[57] Ju M, Liang X, Liu J, Zhou L, Liu Z, Mendes R G, Rümmeli M H and Fu L 2017 Chem. Mater. 29 6095
[58] Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y and Wang X 2021 Nat. Nanotechnol. 16 1201
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[4] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[5] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[13] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[14] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[15] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
No Suggested Reading articles found!