|
|
Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition |
Jia-Jun Ma(马佳俊)1,2,†, Kang Wu(吴康)1,2,†, Zhen-Yu Wang(王振宇)2, Rui-Song Ma(马瑞松)1, Li-Hong Bao(鲍丽宏)1,2,4, Qing Dai(戴庆)3, Jin-Dong Ren(任金东)3,‡, and Hong-Jun Gao(高鸿钧)1,2,4,§ |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 3 CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nano-technology, National Center for Nanoscience and Technology, Beijing 100190, China; 4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report a novel two-step ambient pressure chemical vapor deposition (CVD) pathway to grow high-quality MoS2 monolayer on the SiO2 substrate with large crystal size up to 110 μm. The large specific surface area of the pre-synthesized MoO3 flakes on the mica substrate compared to MoO3 powder could dramatically reduce the consumption of the Mo source. The electronic information inferred from the four-probe scanning tunneling microscope (4P-STM) image explains the threshold voltage variations and the n-type behavior observed in the two-terminal transport measurements. Furthermore, the direct van der Pauw transport also confirms its relatively high carrier mobility. Our study provides a reliable method to synthesize high-quality MoS2 monolayer, which is confirmed by the direct 4P-STM measurement results. Such methodology is a key step toward the large-scale growth of transition metal dichalcogenides (TMDs) on the SiO2 substrate and is essential to further development of the TMDs-related integrated devices.
|
Received: 23 March 2022
Revised: 11 April 2022
Accepted manuscript online: 14 April 2022
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
07.79.Cz
|
(Scanning tunneling microscopes)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the National Natural Science Foundation of China (Grant No. 12004417), the National Key Research and Development Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), the National Natural Science Foundation of China (Grant No. U2032206), Chinese Academy of Sciences (Grant Nos. XDB36000000, YSBR-003, and 112111KYSB20160061), Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant Nos. XDB30000000 and XDB28000000), Youth Innovation Promotion Association of CAS (Grant No. Y201902), and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003). |
Corresponding Authors:
Jin-Dong Ren, Hong-Jun Gao
E-mail: renjd@nanoctr.cn;hjgao@iphy.ac.cn
|
Cite this article:
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧) Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition 2022 Chin. Phys. B 31 088105
|
[1] Tsai M Y, Tarasov A, Hesabi Z R, Taghinejad H, Campbell P M, Joiner C A, Adibi A and Vogel E M 2015 ACS Appl. Mater. Inter. 7 12850 [2] Kim S H, Yi S G, Park M U, Lee C, Kim M and Yoo K H 2019 ACS Appl. Mater. Inter. 11 25306 [3] Zheng C, Jin X, Li Y, Mei J, Sun Y, Xiao M, Zhang H, Zhang Z and Zhang G J 2019 Sci. Rep. 9 759 [4] Liu L, Liu C, Jiang L, Li J, Ding Y, Wang S, Jiang Y G, Sun Y B, Wang J, Chen S, Zhang D W and Zhou P 2021 Nat. Nanotechnol. 16 874 [5] Liu F 2021 Prog. Surf. Sci. 96 100626 [6] Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D, Song X, Wu X, Xiong C, Rummeli M H, Ding F, Zhang Y and Liu Z 2015 Adv. Mater. 27 7839 [7] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D and Zhang G 2020 Nano Lett. 20 7193 [8] Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D and Zhang G 2020 Nat. Electron. 3 711 [9] Li B, Ju Q, Hong W, Cai Q, Lin J and Liu W 2021 Ceram. Int. 47 30106 [10] Chen J Y, Liu L, Li C X and Xu J P 2019 Chin. Phys. Lett. 36 037301 [11] Zhou X, Kang K, Xie S, Dadgar A, Monahan N R, Zhu X Y, Park J and Pasupathy A N 2016 Nano Lett. 16 3148 [12] Lu C P, Li G, Mao J, Wang L M and Andrei E Y 2014 Nano Lett. 14 4628 [13] Hill H M, Rigosi A F, Rim K T, Flynn G W and Heinz T F 2016 Nano Lett. 16 4831 [14] Kerelsky A, Nipane A, Edelberg D, Wang D, Zhou X, Motmaendadgar A, Gao H, Xie S, Kang K, Park J, Teherani J and Pasupathy A 2017 Nano Lett. 17 5962 [15] Zhang F, Lu Z, Choi Y, Liu H, Zheng H, Xie L, Park K, Jiao L and Tao C 2018 ACS Appl. Nano Mater. 1 2041 [16] Ma R S, Ma J, Yan J, Wu L, Liu H, Guo W, Wang S, Huan Q, Lin X, Bao L, Pantelides S T and Gao H J 2019 D Mater. 6 045033 [17] Ma R, Huan Q, Wu L, Yan J, Zou Q, Wang A, Bobisch C A, Bao L and Gao H J 2017 Rev. Sci. Instrum. 88 063704 [18] Ge W, Kawahara K, Tsuji M and Ago H 2013 Nanoscale 5 5773 [19] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320 [20] Yang X, Li Q, Hu G, Wang Z, Yang Z, Liu X, Dong M and Pan C 2016 Sci. China Mater. 59 182 [21] Koós A A, Vancsó P, Magda G Z, Osváth Z, Kertész K, Dobrik G, Hwang C, Tapasztó L and Biró L P 2016 Carbon 105 408 [22] Smithe K K H, English C D, Suryavanshi S V and Pop E 2016 2D Mater. 4 011009 [23] Cui X, Kong Z, Gao E, Huang D, Hao Y, Shen H, Di C A, Xu Z, Zheng J and Zhu D 2018 Nat. Commun. 9 1301 [24] Mallik S K, Sahoo S, Sahu M C, Gupta S K, Dash S P, Ahuja R and Sahoo S 2021 J. Appl. Phys. 129 145106 [25] Zhang J, Yu H, Chen W, Tian X, Liu D, Cheng M, Xie G, Yang W, Yang R, Bai X, Shi D and Zhang G 2014 ACS Nano 8 6024 [26] Chen W, Zhao J, Zhang J, Gu L, Yang Z, Li X, Yu H, Zhu X, Yang R, Shi D, Lin X, Guo J, Bai X and Zhang G 2015 J. Am. Chem. Soc. 137 15632 [27] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554 [28] Wang S, Pacios M, Bhaskaran H and Warner J H 2016 Nanotechnology 27 085604 [29] Lee J, Pak S, Giraud P, Lee Y W, Cho Y, Hong J, Jang A R, Chung H S, Hong W K, Jeong H Y, Shin H S, Occhipinti L G, Morris S M, Cha S, Sohn J I and Kim J M 2017 Adv. Mater. 29 1702206 [30] Hanson E D, Lajaunie L, Hao S, Myers B D, Shi F, Murthy A A, Wolverton C, Arenal R and Dravid V P 2017 Adv. Funct. Mater. 27 1605380 [31] Molina-Mendoza A J, Lado J L, Island J O, Niño M A, Aballe L, Foerster M, Bruno F Y, López-Moreno A, Vaquero-Garzon L, Van Der Zant H S J, Rubio-Bollinger G, Agraït N, Pérez E M, Fernández-Rossier J and Castellanos-Gomez A 2016 Chem. Mater. 28 4042 [32] Fan L, Wang K, Wei J, Zhong M, Wu D and Zhu H 2014 J. Mater. Chem. A 2 13123 [33] Smithe K K H, Suryavanshi S V, Munoz Rojo M, Tedjarati A D and Pop E 2017 ACS Nano 11 8456 [34] Cun H, Macha M, Kim H, Liu K, Zhao Y, Lagrange T, Kis A and Radenovic A 2019 Nano Res. 12 2646 [35] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [36] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801 [37] Miccoli I, Edler F, Pfnur H and Tegenkamp C 2015 J. Phys. Condens. Mat. 27 223201 [38] Voigtlander B, Cherepanov V, Korte S, Leis A, Cuma D, Just S and Lupke F 2018 Rev. Sci. Instrum. 89 101101 [39] Yan J, Ma J, Wang A, Ma R, Wu L, Wu Z, Liu L, Bao L, Huan Q and Gao H J 2021 Rev. Sci. Instrum. 92 103702 [40] Ma R S, Ma J, Yan J, Wu L, Liu H, Guo W, Wang S, Huan Q, Lin X, Bao L, Pantelides S T and Gao H J 2019 2D Mater. 6 045033 [41] Guinea F, Katsnelson M I and Vozmediano M A H 2008 Phys. Rev. B 77 075422 [42] Ma R S, Ma J, Yan J, Wu L, Guo W, Wang S, Huan Q, Bao L, Pantelides S T and Gao H J 2020 Nanoscale 12 12038 [43] Park Y, Baac H W, Heo J and Yoo G 2016 Appl. Phys. Lett. 108 083102 [44] Okogbue E, Kim J H, Ko T J, Chung H S, Krishnaprasad A, Flores J C, Nehate S, Kaium M G, Park J B, Lee S J, Sundaram K B, Zhai L, Roy T and Jung Y 2018 ACS Appl. Mater. Inter. 10 30623 [45] Lembke D, Allain A and Kis A 2015 Nanoscale 7 6255 [46] Xu H, Zhang H, Guo Z, Shan Y, Wu S, Wang J, Hu W, Liu H, Sun Z, Luo C, Wu X, Xu Z, Zhang D W, Bao W and Zhou P 2018 Small 14 1803465 [47] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696 [48] Dattatray J. Late, Liu B, Dravid H S S R M V P and Rao C N R 2017 ACS Nano 6 5635 [49] Wehling T O, Katsnelson M I and Lichtenstein A I 2009 Chem. Phys. Lett. 476 125 [50] Tang A, Kumar A, Jaikissoon M, Saraswat K, Wong H P and Pop E 2021 ACS Appl. Mater. Inter. 13 41866 [51] Nagashio K, Nishimura T, Kita K and Toriumi A 2010 Jpn. J. Appl. Phys. 49 051304 [52] Van Der Pauw L J 1958 Philips Tech. Rev. 20 220 [53] Van Der Pauw L J 1958 Philips Res. Rep. 13 1 [54] Han G H, Kybert N J, Naylor C H, Lee B S, Ping J, Park J H, Kang J, Lee S Y, Lee Y H, Agarwal R and Johnson A T 2015 Nat. Commun. 6 6128 [55] Sun L, Leong W S, Yang S, Chisholm M F, Liang S J, Ang L K, Tang Y, Mao Y, Kong J and Yang H Y 2017 Adv. Funct. Mater. 27 1605896 [56] Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z and Zhang Y 2018 Nat. Commun. 9 979 [57] Ju M, Liang X, Liu J, Zhou L, Liu Z, Mendes R G, Rümmeli M H and Fu L 2017 Chem. Mater. 29 6095 [58] Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y and Wang X 2021 Nat. Nanotechnol. 16 1201 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|