Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016102    DOI: 10.1088/1674-1056/abb3ed
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates

Ze-Yuan Yang(杨泽园)1, Jun Wang(王俊)1,†, Guo-Feng Wu(武国峰)1, Yong-Qing Huang(黄永清)1, Xiao-Min Ren(任晓敏)1, Hai-Ming Ji(季海铭)2, and Shuai Luo(罗帅)2
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned substrate is nonuniform, which is far different from that in a planar substrate. Comparing with the planar substrate, the thermal stress is significantly reduced for the GaAs layer on the patterned substrate. The effects of the width of the V-groove, the thickness, and the width of the SiO2 mask on the thermal stress are studied. It is found that the SiO2 mask and V-groove play a crucial role in the stress of the GaAs layer on Si substrate. The results indicate that when the width of V-groove is 50 nm, the width and the thickness of the SiO2 mask are both 100 nm, the GaAs layer is subjected to the minimum stress. Furthermore, Comparing with the planar substrate, the average stress of the GaAs epitaxial layer in the growth window region of the patterned substrate is reduced by 90%. These findings are useful in the optimal designing of growing high-quality GaAs films on patterned Si substrates.
Keywords:  GaAs on Si      thermal stress      V-groove      finite-element method  
Received:  10 June 2020      Revised:  07 August 2020      Accepted manuscript online:  01 September 2020
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.05.Ea (III-V semiconductors)  
  02.70.Dh (Finite-element and Galerkin methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874148, 61974141, and 61674020), the Beijing Natural Science Foundation, China (Grant No. 4192043), the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2018ZT01), and the 111 Project of China (Grant No. B07005).
Corresponding Authors:  Corresponding author. E-mail: wangjun12@bupt.edu.cn   

Cite this article: 

Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅) Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates 2021 Chin. Phys. B 30 016102

1 Bolkhovityanov Y B and Pchelyakov O P 2008 Phys. Usp. 51 437
2 Li Q, Wan Y, Liu A Y, Gossard A C, Bowers J E, Hu E L and Lau K M 2016 Opt. Express 24 21038
3 Chen S M, Liao M Y, Tang M C, Wu J, Martin M, Baron T, Seeds A and Liu H Y 2017 Opt. Express 25 4632
4 Vaisman M, Jain N, Li Q, Lau K M, Makoutz E, Saenz T, McMahon W E, Tamboli A C and Warren E L 2018 IEEE J. Photovolt. 8 1635
5 Wan Y, Zhang Z, Chao R, Norman J, Joung D, Shang C, Li Q, Kennedy M J, Liang D, Zhang C, Shi J W, Gossard A C, Lau K M and Bowers J E 2017 Opt. Express 25 27715
6 Akiyama M, Kawarada Y and Kaminishi K 1984 Jpn. J. Appl. Phys. 23 L843
7 He Y R, Wang J, Hu H Y, Wang Q, Huang Y Q and Ren X M 2015 Appl. Phys. Lett. 106 202105
8 Xu H Y, Guo Y N, Wang Y, Zou J, Kang J H, Gao Q, Tan H H and Jagadish C 2009 J. Appl. Phys. 106 083514
9 Wang J, Hu H Y, Deng C, He Y R, Wang Q, Duan X F, Huang Y Q and Ren X M 2015 Chin. Phys. B 24 028101
10 Wang T, Liu H Y, Lee A, Pozzi F and Seeds A 2011 Opt. Express 19 11381
11 Vanamu G, Datye A K, Dawson R and Zaidi S H 2006 Appl. Phys. Lett. 88 251909
12 Hu H Y, Wang J, Cheng Z, Yang Z Y, Yin H Y, Fan Y B, Ma X, Huang Y Q and Ren X M 2018 Appl. Phys. A 124 296
13 Chen S M, Li W, Wu J, Jiang Q, Tang M C, Shutts S, Elliott S N, Sobiesierski A, Seeds A J, Ross I, Smowton P M and Liu H Y 2016 Nat. Photon. 10 307
14 Li S Y, Zhou X L, Kong X L, Li M K, Mi J P, Bian J, Wang W and Pan J Q 2015 J. Cryst. Growth 426 147
15 Guo W, Date L, Pena V, Bao X, Merckling C, Waldron N, Collaert N, Caymax M, Sanchez E, Vancoille E, Barla K, Thean A, Eyben P and Vandervorst W 2014 Appl. Phys. Lett. 105 062101
16 Orzali T, Vert A, O'Brien B, Herman J L, Vivekanand S, Hill R J W, Karim Z and Rao S S P 2015 J. Appl. Phys. 118 105307
17 Li Q and Lau K M 2017 Prog. Cryst. Growth Charact. Mater. 63 105
18 Paladugu M, Merckling C, Loo R, Richard O, Bender H, Dekoster J, Vandervorst W, Caymax M and Heyns M 2012 Cryst. Growth Des. 12 4696
19 Li Q, Ng K W and Lau K M 2015 Appl. Phys. Lett. 106 072105
20 Yang V K, Groenert M, Leitz C W, Pitera A J, Currie M T and Fitzgerald E A 2003 J. Appl. Phys. 93 3859
21 Kim K S, Yang G M, Shim H W, Lim K Y, Suh E K and Lee H J 1997 J. Appl. Phys. 82 5103
22 Scaccabarozzi A, Bietti S, Fedorov A, von Kanel H, Miglio L and Sanguinetti S 2014 J. Cryst. Growth 401 559
23 Li S Y, Zhou X L, Kong X T, Li M K, Mi J P, Bian J, Wang W and Pan J Q 2015 Chin. Phys. Lett. 32 028101
24 Stoney G G 1909 Proceedings of the Royal Society of London: Series A, Containing papers of a mathematical and physical character 82 172
25 Ghosh S, Leonhardt D and Han S M 2011 Appl. Phys. Lett. 99 181911
26 Tang Y, Rich D H, Lingunis E H and Haegel N M 1994 J. Appl. Phys. 76 3032
27 Freundlich A, Kamada H, Neu G and Gil B 1989 Phys. Rev. B 40 1652
[1] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[2] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[3] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
[4] Theoretical investigation of hierarchical sub-wavelength photonic structures fabricated using high-order waveguide-mode interference lithograph
Ru Wang(王茹), Xiangxian Wang(王向贤), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2017, 26(2): 024202.
[5] Application of thermal stress model to paint removal by Q-switched Nd:YAG laser
Zou Wan-Fang (邹万芳), Xie Ying-Mao (谢应茂), Xiao Xing (肖兴), Zeng Xiang-Zhi (曾祥志), Luo Ying (罗颖). Chin. Phys. B, 2014, 23(7): 074205.
[6] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[7] Passive polarization rotator based on silica photonic crystal fiber for 1.31-μm and 1.55-μm bands via adjusting the fiber length
Chen Lei (陈雷), Zhang Wei-Gang (张伟刚), Wang Li (王丽), Bai Zhi-Yong (白志勇), Zhang Shan-Shan (张珊珊), Wang Biao (王标), Yan Tie-Yi (严铁毅), Jonathan Sieg. Chin. Phys. B, 2014, 23(10): 104220.
[8] Size-dependent thermal stresses in the core–shell nanoparticles
Astefanoaei I, Dumitru I, Stancu Al. Chin. Phys. B, 2013, 22(12): 128102.
[9] Size and temperature effects on electric properties of CdTe/ZnTe quantum rings
Woo-Pyo Hong and Seoung-Hwan Park . Chin. Phys. B, 2011, 20(9): 098502.
[10] Influence of thermal stress on the characteristic parameters of AlGaN/GaN heterostructure Schottky contacts
Lü Yuan-Jie(吕元杰), Lin Zhao-Jun(林兆军), Zhang Yu(张宇), Meng Ling-Guo(孟令国), Cao Zhi-Fang(曹芝芳), Luan Chong-Biao(栾崇彪), Chen Hong(陈弘), and Wang Zhan-Guo(王占国) . Chin. Phys. B, 2011, 20(4): 047105.
No Suggested Reading articles found!