Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050309    DOI: 10.1088/1674-1056/ac4e02
GENERAL Prev   Next  

A rational quantum state sharing protocol with semi-off-line dealer

Hua-Li Zhang(张花丽)1, Bi-Chen Che(车碧琛)1, Zhao Dou(窦钊)1,†, Yu Yang(杨榆)2, and Xiu-Bo Chen(陈秀波)1
1 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  A rational quantum state sharing protocol with the semi-off-line dealer is proposed. Firstly, the dealer Alice shares an arbitrary two-particle entangled state with the players by Einstein-Podolsky-Rosen (EPR) pairs and Greenberger-Horne-Zeilinger (GHZ) states. The EPR pairs are prepared by Charlie instead of the dealer, reducing the workload of the dealer. Secondly, all players have the same probability of reconstructing the quantum state, guaranteeing the fairness of the protocol. In addition, the dealer is semi-off-line, which considerably reduces the information exchanging between the dealer and the players. Finally, our protocol achieves security, fairness, correctness, and strict Nash equilibrium.
Keywords:  rational quantum state sharing      game theory      semi-off-line      Nash equilibrium  
Received:  31 August 2021      Revised:  04 December 2021      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2020YFB1805405),the 111 Project,China (Grant No.B21049),the Foundation of Guizhou Provincial Key Laboratory of Public Big Data,China (Grant No.2019BDKFJJ014),and the Fundamental Research Funds for the Central Universities,China (Grant No.2020RC38).
Corresponding Authors:  Zhao Dou,E-mail:dou@bupt.edu.cn     E-mail:  dou@bupt.edu.cn
About author:  2022-1-24

Cite this article: 

Hua-Li Zhang(张花丽), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Yu Yang(杨榆), and Xiu-Bo Chen(陈秀波) A rational quantum state sharing protocol with semi-off-line dealer 2022 Chin. Phys. B 31 050309

[1] Shamir A 1979 Commun. ACM 22 612
[2] Benaloh J and Leichter J 1988 Conference on the Theory and Application of Cryptography, 1988, Springer, New York, p. 27
[3] Brickell E F 1989 Workshop on the Theory and Application of of Cryptographic Techniques, 1989, Springer, Berlin, Heidelberg, p. 468
[4] Krawczyk H 1993 Annual international cryptology conference, 1993, Springer, Berlin, Heidelberg, p. 136
[5] Wang X W, Xia L X, Wang Z Y and Zhang D Y 2010 Opt. Commun. 283 1196
[6] Wang X W, Zhang D Y, Tang S Q, Zhan X G and You K M 2010 Int. J. Theor. Phys. 49 2691
[7] Wang X W, Zhang D Y, Tang S Q and Xie L J 2011 J. Phys. B: At., Mol. Opt. Phys. 44 035505
[8] Peng J Y, Bai M Q and Mo Z W 2014 Chin. Phys. B 23 010304
[9] Guo W M and Qin L R 2018 Chin. Phys. B 27 110302
[10] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[11] Steane A M 1996 Phys. Rev. A 54 4741
[12] Li Y, Zhang K and Peng K 2004 Phys. Lett. A 324 420
[13] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[14] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[15] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
[16] Li X H, Zhou P, Li C Y, Zhou H Y and Deng F G 2006 J. Phys. B: At., Mol. Opt. Phys. 39 1975
[17] Liu Y L, Man Z X and Xia Y J 2008 Acta Phys Sin. 57 2680 (in Chinese)
[18] Zhang J X, Jing J T, Xie C D and Peng K C 2005 Chin. Phys. Lett. 22 2751
[19] Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 77 032321
[20] Brown I D, Stepney S, Sudbery A and Braunstein S L 2005 J. Phys. A: Math. Gen. 38 1119
[21] Nie Y Y, Sang M H, Li Y H and Liu J C 2011 Int. J. Theor. Phys. 50 1367
[22] Muralidharan S, Jain S and Panigrahi P K 2011 Opt. Commun. 284 1082
[23] Paul N, Menon J V, Karumanchi S, Muralidharan S and Panigrahi P K 2011 Quantum Inf. Process. 10 619
[24] Han L F and Xu H F 2012 Int. J. Theor. Phys. 51 2540
[25] Sun X M, Zha X W, Qi J X and Lan Q 2013 Acta Phys Sin. 62 230302 (in Chinese)
[26] Jiang M and Dong D 2013 Quantum Inf. Process. 12 237
[27] Wang M M, Wang W, Chen J G and Farouk A 2015 Quantum Inf. Process. 14 4211
[28] Cao H and Ma W 2017 IEEE Photon. J. 9 1
[29] Cao H and Ma W 2018 IEEE Access 6 10453
[30] Song X, Liu Y, Xiao M, Deng H and Yang S 2020 Quantum Inf. Process. 19 1
[31] Halpern J and Teague V 2004 Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, 2004, p. 623
[32] Kol G and Naor M 2008 Proceedings of the fortieth annual ACM symposium on theory of computing, 2008, p. 423
[33] Asharov G and Lindell Y 2009 Annual International Cryptology Conference, 2009, Springer, Berlin, Heidelberg, p. 559
[34] De S J and Ruj S 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), 2016, p. 925
[35] Vakilinia I and Sengupta S 2019 IET Inf Secur. 13 530
[36] Chen Z, Tian Y and Peng C 2021 Sci. China Life Sci. 64 1
[37] Maitra A, De S J, Paul G and Pal A K 2015 Phys. Rev. A 92 022305
[38] Dou Z, Xu G, Chen X B, Liu X and Yang Y X 2018 Sci. China Life Sci. 61 1
[39] Qin H, Tang W K S and Tso R 2018 Sci. Rep. 8 1
[40] Nielsen M A and Chuang I 2002 Quantum Inf. Comput. 70 558
[41] Wen Q Y, Qin S J and Gao F 2014 J. Cryptol. 1 200
[42] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[43] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[44] Chen X B, Xu G, Niu X X, Wen Q Y and Yang Y X 2010 Opt. Commun. 283 1561
[1] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[2] Game theory model of exit selection in pedestrian evacuation considering visual range and choice firmness
Wei-Li Wang(王维莉), Fang-Fang Wan(万芳芳), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2020, 29(8): 084502.
[3] The evolution of cooperation in public good game with deposit
Xian-Jia Wang(王先甲), Wen-Man Chen(陈文嫚). Chin. Phys. B, 2019, 28(8): 080201.
[4] A 2-stage strategy updating rule promotes cooperation in the prisoner's dilemma game
Fang Xiang-Sheng (方祥圣), Zhu Ping (朱平), Liu Run-Ran (刘润然), Liu En-Yu (刘恩钰), Wei Gui-Yi (魏贵义). Chin. Phys. B, 2012, 21(10): 108702.
[5] The effect of quantum noise on multiplayer quantum game
Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Zheng Xiao-Juan(郑小娟). Chin. Phys. B, 2007, 16(4): 915-918.
No Suggested Reading articles found!