Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050311    DOI: 10.1088/1674-1056/ac3653
GENERAL Prev   Next  

Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system

Yi-Cai Zhang(张义财)
School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
Abstract  We investigate the bound state problem in a one-dimensional flat band system with a Coulomb potential. It is found that, in the presence of a Coulomb potential of type I (with three equal diagonal elements), similarly to that in the two-dimensional case, the flat band could not survive. At the same time, the flat band states are transformed into localized states with a logarithmic singularity near the center position. In addition, the wave function near the origin would collapse for an arbitrarily weak Coulomb potential. Due to the wave function collapses, the eigen-energies for a shifted Coulomb potential depend sensitively on the cut-off parameter. For a Coulomb potential of type II, there exist infinite bound states that are generated from the flat band. Furthermore, when the bound state energy is very near the flat band, the energy is inversely proportional to the natural number, e.g.,$E_n\propto$ 1/n, n=1,2,3,... It is expected that the 1/n energy spectrum could be observed experimentally in the near future.
Keywords:  wave function collapses      flat band      infinite bound states  
Received:  05 October 2021      Revised:  02 November 2021      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11874127).
Corresponding Authors:  Yi-Cai Zhang,E-mail:zhangyicai123456@163.com     E-mail:  zhangyicai123456@163.com
About author:  2021-11-4

Cite this article: 

Yi-Cai Zhang(张义财) Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system 2022 Chin. Phys. B 31 050311

[1] Sutherland B 1986 Phys. Rev. B 34 5208
[2] Vidal J, Mosseri R and Doucot B 1998 Phys. Rev. Lett. 81 5888
[3] Bergman D L, Wu C and Balents L 2008 Phys. Rev. B 78 125104
[4] Bercioux D, Urban D F, Grabert H and Häusler W 2009 Phys. Rev. A 80 063603
[5] Leykam D, Andreanov A and Flach S 2018 Adv. Phys. X 3:1 1473052
[6] Dóra B, Kailasvuori J and Moessner R 2011 Phys. Rev. B 84 195422
[7] Raoux A, Morigi M, Fuchs J N, Piéchon F and Montambaux G 2014 Phys. Rev. Lett. 112 026402
[8] Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308
[9] Peotta S and Törmä P 2015Nat. Commun. 6 8944
[10] Cao Y et al. 2018 Nature 556 43
[11] Hazra T, Verma N,and Randeria M 2019 Phys. Rev. X 9 031049
[12] Xu H Y and Lai Y C 2020 Phys. Rev. Res. 2 013062
[13] Wang F and Ran Y 2011 Phys. Rev. B 84 241103
[14] Chen Y R, Xu Y, Wang J, Liu J F and Ma Z 2019 Phys. Rev. B 99 045420
[15] Wu Y R and Zhang Y C 2021 Chin. Phys. B 30 060306
[16] Wu J et al 2021 Chin. Phys. B 30 077104
[17] Mielke A 1999 Phys. Rev. Lett. 82 4312
[18] Leykam D, Bodyfelt J D, Desyatnikov A S and Flach S 2017 Eur. Phys. J. B 90 1
[19] Shen R, Shao L B, Wang B and Xing D Y 2010 Phys. Rev. B 81 041410
[20] Urban D F, Bercioux D, Wimmer M, and Häusler W 2011 Phys. Rev. B 84 115136
[21] Fang A, Zhang Z Q, Louie S G and Chan C T 2016 Phys. Rev. B 93 035422
[22] Betancur-Ocampo Y, Cordourier-Maruri G, Gupta V and de Coss R 2017 Phys. Rev. B 96 024304
[23] Yang S, Gu Z C, Sun K and Das Sarma S 2012 Phys. Rev. B 86 241112
[24] Biswas T and Ghosh T K 2018 J. Phys.: Condens. Matter 30 075301
[25] Tovmasyan M, Peotta S, Liang L, Törmä P and Huber S D 2018 Phys. Rev. B 98 134513
[26] Volovik G E 2019 JETP Lett. 110 352
[27] Julku A, Peltonen T J, Liang L, Heikkila T T and Törmä a P 2020 Phys. Rev. B 101 060505
[28] Kopnin N B, Heikkila T T and Volovik G E 2011 Phys. Rev. B 83 220503
[29] Mukherjee S et al. 2015 Phys. Rev. Lett. 114 245504
[30] Zhang S, Hung H H and Wu C 2010 Phys. Rev. A 82 053618
[31] Iglovikov V I et al. 2014 Phys. Rev. B 90 094506
[32] Julku A et al. 2016 Phys. Rev. Lett. 117 045303
[33] Liang L et al. 2017 Phys. Rev. B 95 024515
[34] Iskin M 2019 Phys. Rev. A 99 053608
[35] Wu Y R, Zhang X F, Liu C F, Liu W M and Zhang Y C 2021 Sci. Rep. 11 13572
[36] Xu F, Zhang L and Jiang L Y 2021 Chin. Phys. B 30 067401
[37] Economou E N 2006 Green’s Functions in Quantum Physics 3rd edn (Berlin: Springer-Verlag)
[38] Gorbar E V, Gusynin V P and Oriekhov D O 2019 Phys. Rev. B 99 155124
[39] Pottelberge R V 2020 Phys. Rev. B 101 197102
[40] Zhang Y C and Zhu G B 2022 J. Phys. B: At. Mol. Opt. Phys. (accepted)
[41] Zhang Y C, Song S W, Liu C F and Liu W M 2013 Phys. Rev. A 87 023612
[42] Wang Z X and Guo D R 1989 Special Functions (Singapore: World Scientific)
[43] Strange P 1998 Relativistic Quantum Mechanics 1st edn (Cambridge: Cambridge University Press)
[44] Landau L D and Lifshitz E M 1977 Quantum mechanics: Nonrelativistic theory 3rd edn (Orxford: Pergamon Press)
[45] Downing C A and Portnoi M E 2014 Phys. Rev. A 90 052116
[46] Huang X, Lai Y, Hang Z H, Zheng H and Chan C T 2011 Nat. Mater. 10 582
[47] Chan C T, Hang Z H and Huang X 2012 Adv. Optoelectron. 2012 313984
[48] Wang Y et al. 2013 Science 340 734
[49] Mao J et al. 2016 Nat. Phys. 12 545
[50] Zhang Y C 2022 Phys. Scr. 97 015401
[51] Zhang Y C 2021 Bound States in the Continuum (BIC) Protected By Self-Sustained Potential Barriers in a Flat Band System (Preprint at Works Across Apps and Sites)
[52] Han C D, Xu H Y, Huang D and Lai Y C 2019 Phys. Rev. B 99 245413
[53] Dong S H 2003 Phys. Scr. 67 89
[1] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[2] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[3] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[4] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[5] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[6] Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星). Chin. Phys. B, 2020, 29(1): 017402.
[7] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[8] Unconventional chiral d-wave superconducting state in strained graphene
Feng Xu(徐峰), Lei Zhang(张磊). Chin. Phys. B, 2019, 28(11): 117403.
[9] Tunneling dynamics of bosons in the diamond lattice chain
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(10): 105203.
[10] Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
Yi-Xin Zong(宗易昕), Jian-Bai Xia(夏建白), Hai-Bin Wu(武海斌). Chin. Phys. B, 2017, 26(4): 044208.
No Suggested Reading articles found!