The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然)1,†, Yun-Xian Chen(陈芸仙)2,‡, Ping-Hui Mou(牟平辉)2,§, and Ke-Jian He(何柯腱)3,¶
1 Chongqing College of Mobile Communication, Chongqing 401520, China; 2 Physics and Space College, China West Normal University, Nanchong 637000, China; 3 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
Abstract In the context of Rastall gravity, the shadow and observation intensity casted by the new Kiselev-like black hole with dust field have been numerically investigated. In this system, the Rastall parameter and surrounding dust field structure parameter have considerable consequences on the geometric structure of spacetime. Considering the photon trajectories near the black hole, we investigate the variation of the radii of photon sphere, event horizon and black hole shadow under the different related parameters. Furthermore, taking into account two different spherically symmetric accretion models as the only background light source, we also studied the observed luminosity and intensity of black holes. For the both spherical accretions background, the results show that the decrease or increase of the observed luminosity depends on the value range of relevant parameters, and the promotion effect is far less obvious than the attenuation effect on the observed intensity. One can find that the inner shadow region and outer bright region of the black hole wrapped by infalling accretion are significantly darker than those of the static model, which is closely related to the Doppler effect. In addition, the size of the shadow and the position of the photon sphere are always the same in the two accretion models, which means that the black hole shadow depend only on the geometry of spacetime, while the observation luminosity is affected by the form of accretion material and the related spacetime structure.
(Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875095 and 11903025) and Basic Research Project of Science and Technology Committee of Chongqing (Grant No. cstc2018jcyjA2480).
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱) The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory 2023 Chin. Phys. B 32 010401
[1] Abbott B P, et al. 2016 Phys. Rev. Lett.116 241103 [2] Abbott B P, et al. 2016 Phys. Rev. Lett.116 241102 [3] Abbott B P, et al. 2016 Phys. Rev. Lett.116 061102 [4] Akiyama K, et al. 2019 Astrophys. J. 875 L1 [5] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L4 [6] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L5 [7] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L6 [8] Synge J L 1966 Mon. Not. Roy. Astron. Soc.131 463 [9] Luminet J P 1979 Astron. Astrophys.75 228 [10] Bardeen J M 1972 Timelike and null geodesics in the Kerr metric, in Black Holes (Les Astres Occlus: Les Houches) pp. 215-239 [11] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Oxford University Press) [12] Falcke H, Melia F and Agol E 2000 Astrophys. J. 528 L13 [13] Shaikh R, Kocherlakota P, Narayan R and Joshi P S 2019 Mon. Not. Roy. Astron. Soc.482 52 [14] Banerjee I, Chakraborty S and SenGupta S 2020 Phys. Rev. D101 041301 [15] Vagnozzi S and Visinelli L 2019 Phys. Rev. D100 024020 [16] Vagnozzi S, Bambi C and Visinelli L 2020 Class. Quant. Grav.37 087001 [17] Safarzadeh M, Loeb A and Reid M 2019 Mon. Not. Roy. Astron. Soc. 488 L90 [18] Davoudiasl H and Denton P B 2019 Phys. Rev. Lett.123 021102 [19] Roy R and Yajnik U A 2020 Phys. Lett. B803 135284 [20] Chen Y F, Shu J, Xue X, Yuan Q and Zhao Y 2020 Phys. Rev. Lett.124 061102 [21] Amarilla L, Eiroa E F and Giribet G 2010 Phys. Rev. D81 124045 [22] Li Z L and Bambi C 2014 JCAP01 041 [23] Grenzebach A, Perlick V and Lämmerzahl C 2014 Phys. Rev. D89 124004 [24] Contreras E, Rincón Á, Panotopoulos G, Bargue ño P and Koch B 2020 Phys. Rev. D101 064053 [25] Wei S W and Liu Y X 2021 Eur. Phys. J. Plus136 436 [26] Hu Z Z, Zhong Z, Li P C, Guo M Y and Chen B 2021 Phys. Rev. D103 044057 [27] Guo M Y and Li P C 2020 Eur. Phys. J. C80 588 [28] Chang Z and Zhu Q H 2020 Phys. Rev. D102 044012 [29] Guo Y and Miao Y G 2020 Phys. Rev. D102 084057 [30] Long F, Wang J C, Chen S B and Jing J L 2019 JHEP10 269 [31] Guo H, Liu H, Kuang X M and Wang B 2020 Phys. Rev. D102 124019 [32] Wei S W and Liu Y X 2013 JCAP11 063 [33] Wei S W, Cheng P, Zhong Y and Zhou X N 2015 JCAP08 004 [34] Huang Y, Chen S B and Jing J L 2016 Eur. Phys. J. C76 594 [35] Wang H M, Xu Y M and Wei S W 2019 JCAP03 046 [36] Neves J C S 2020 Eur. Phys. J. C80 717 [37] Chen D Y, Gao C H, Liu X M and Yu C Y 2021 Eur. Phys. J. C81 700 [38] Çimdiker İ, Demir D and Övgün A 2021 Phys. Dark Univ.34 100900 [39] Javed W, Hamza A and Övgün A 2021 Universe7 385 [40] Okyay M and Övgün A 2022 JCAP01 009 [41] Porth O, et al. 2019 Astrophys. J. Suppl.243 26 [42] Narayan R, Johnson M D and Gammie C F 2019 Astrophys. J. 885 L33 [43] Cunha P V P, Eiró N A, Herdeiro C A R and Lemos J P S 2020 JCAP2003 035 [44] Zeng X X, Zhang H Q and Zhang H B 2020 Eur. Phys. J. C80 872 [45] Qin X, Chen S B and Jing J L 2021 Class. Quant. Grav.38 115008 [46] Gralla S E, Holz D R and Wald R M 2019 Phys. Rev. D100 024018 [47] Zeng X X and Zhang H Q 2020 Eur. Phys. J. C80 1058 [48] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D104 024003 [49] Peng J, Guo M Y and Feng X H 2021 Chin. Phys. C45 085103 [50] He K J, Tan S C and Li G P 2022 Eur. Phys. J. C82 81 [51] Li G P and He K J 2021 Eur. Phys. J. C81 1018 [52] Zeng X X, He K J and Li G P 2022 Sci. China Phys. Mech. Astron.65 290411 [53] Zeng X X, Li G P and He K J 2022 Nucl. Phys. B974 115639 [54] Li G P and He K J 2021 JCAP06 037 [55] Peng J, Guo M Y and Feng X H 2021 Phys. Rev. D104 124010 [56] Gralla S E and Lupsasca A 2020 Phys. Rev. D101 044031 [57] He K J, Guo S, Tan S C and Li G P 2022 Chin. Phys. C46 085106 [58] Guo S, Li G R and Liang E W 2022 Phys. Rev. D105 023024 [59] Zhu Y N and Wang T 2021 Phys. Rev. D104 104052 [60] Guerrero M, Olmo G J, Rubiera-Garcia D and Gómez D S C 2021 JCAP08 036 [61] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D104 044049 [62] Hou Y H, Guo M Y and Chen B 2021 Phys. Rev. D104 024001 [63] Saurabh K and Jusufi K 2021 Eur. Phys. J. C81 490 [64] Rastall P 1972 Phys. Rev. D6 3357 [65] Rastall P 1976 Can. J. Phys.54 66 [66] Heydarzade Y and Darabi F 2017 Phys. Lett. B771 365 [67] Pourhassan B and Upadhyay S 2021 Eur. Phys. J. Plus136 311 [68] Lobo I P, Moradpour H, Morais Graça J P and Salako I G 2018 Int. J. Mod. Phys. D27 1850069 [69] Kumar R, Singh B P, Ali M S and Ghosh S G 2021 Phys. Dark Univ.34 100881 [70] Soroushfar S, Saffari R and Upadhyay S 2019 Gen. Rel. Grav.51 130 [71] Lobo I P, Richarte M G, Morais Graça J P and Moradpour H 2020 Eur. Phys. J. Plus135 550 [72] Gogoi D J and Goswami U D 2021 Phys. Dark Univ.33 100860 [73] Guo S, He K J, Li G R and Li G P 2021 Class. Quant. Grav.38 165013 [74] Kiselev V V 2003 Class. Quant. Grav.20 1187 [75] Vikman A 2005 Phys. Rev. D71 023515 [76] Jaroszynski M and Kurpiewski A 1997 Astron. Astrophys.326 419 [77] Bambi C 2013 Phys. Rev. D87 107501
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.