Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057102    DOI: 10.1088/1674-1056/ac322b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Evolution of optical properties and molecular structure of PCBM films under proton irradiation

Guo-Dong Xiong(熊国栋)1,2, Hui-Ping Zhu(朱慧平)1,†, Lei Wang(王磊)1, Bo Li(李博)1,‡, Fa-Zhan Zhao(赵发展)1, and Zheng-Sheng Han(韩郑生)1,2,§
1 Key Laboratory of Science and Technology on Silicon Devices, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  Low-energy proton irradiation effects on the optical properties and the molecular structure of phenyl-C61-butyric acid methyl ester (PCBM) are studied in this work. The PCBM films are irradiated by 100-keV proton beams with fluences of 5×1012 p/cm2, 5×1013 p/cm2, and 5×1014 p/cm2, respectively. The photoluminescence (PL) peaks of the post-irradiated PCBM films show a progressive decrease in the peak intensity as the proton fluences increase, which can be attributed to the deep defect levels induced by proton irradiation. Additionally, a slight blue-shift in the PL spectrum is also observed at a proton fluence of 5×1014 p/cm2. The underlying mechanism can be traced back to the lift of the lowest unoccupied molecular orbital (LUMO) level, which is caused by the attachment of methoxy radicals on ortho position of the phenyl ring in the post-irradiated PCBM structure. This work is of significance in understanding the radiation hardness and the damage mechanism of the PCBM film in radiation environments, which is essential before it is put into practical application in space.
Keywords:  PCBM      proton irradiation effects      optical property      molecular structure  
Received:  07 September 2021      Revised:  12 October 2021      Accepted manuscript online: 
PACS:  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
  73.61.Wp (Fullerenes and related materials)  
  78.30.Na (Fullerenes and related materials)  
  78.66.Tr (Fullerenes and related materials)  
Fund: Project supported by the Youth Innovation Promotion Association,Chinese Academy of Sciences,the National Natural Science Foundation of China (Grant No.61874135),and the Foundation of Frontier Science of the Chinese Academy of Sciences (Grant No.ZDBS-LY-JSC015).
Corresponding Authors:  Hui-Ping Zhu,E-mail:zhuhuiping@ime.ac.cn;Bo Li,E-mail:libo3@ime.ac.cn;Zheng-Sheng Han,E-mail:zshan@ime.ac.cn     E-mail:  zhuhuiping@ime.ac.cn;libo3@ime.ac.cn;zshan@ime.ac.cn
About author:  2021-10-22

Cite this article: 

Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生) Evolution of optical properties and molecular structure of PCBM films under proton irradiation 2022 Chin. Phys. B 31 057102

[1] Mihailetchi V D, van Duren J K J, Blom P W M, Hummelen J C, Janssen R A J, Kroon J M, Rispens M T, Verhees W J H and Wienk M M 2003 Adv. Funct. Mater. 13 43
[2] Tu Y G, Wu J, Xu G N, Yang X Y, Cai R, Gong Q H, Zhu R and Huang W 2021 Adv. Mater. 33 2006545
[3] Yang J, Bao Q, Shen L and Ding L 2020 Nano Energy 76 105019
[4] Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G and Yang Y 2014 Nat. Commun. 5 5404
[5] Hao D, Zou J and Huang J 2020 InfoMat. 2 139
[6] Xiong G, Qin Z, Li B, Wang L, Zhang X, Zheng Z, Zhu H, Zhao S, Gao J, Li B, Yang J, Li X, Luo J, Han Z, Liu X and Zhao F 2021 J. Mater. Chem. C 9 2095
[7] Yuan Y and Huang J 2016 Acc. Chem. Res. 49 286
[8] Shao Y H, Xiao Z G, Bi C, Yuan Y B and Huang J S 2014 Nat. Commun. 5 5784
[9] Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P and Sargent E H 2015 Nat. Commun. 6 7081
[10] Zhong Y, Hufnagel M, Thelakkat M, Li C and Huettner S 2020 Adv. Funct. Mater. 30 1908920
[11] Liu Y T, Jia R X, Wang Y C, Hu Z Y, Zhang Y M, Pang T Q, Zhu Y J and Luan S Z 2017 ACS Appl. Mater. Interfaces 9 15638
[12] Kwon K C, Hong K, Van Le Q, Lee S Y, Choi J, Kim K B, Kim S Y and Jang H W 2016 Adv. Funct. Mater. 26 4213
[13] Ran C, Xu J, Gao W, Huang C and Dou S 2018 Chem. Soc. Rev. 47 4581
[14] Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G and Neitzert H C 2016 Adv. Mater. 28 8726
[15] Lang F, Jost M, Bundesmann J, Denker A, Albrecht S, Landi G, Neitzert H C, Rappich J and Nickel N H 2019 Energy Environ. Sci. 12 1634
[16] Xiao W, Yang J, Xiong S, Li D, Li Y, Tang J, Duan C and Bao Q 2019 Sol. RRL. 1900394
[17] Schwank J R, Shaneyfelt M R and Dodd P E 2013 IEEE Trans. Nucl. Sci. 60 2074
[18] Yoo S H, Kum J M, Ali G, Heo S H and Cho S O 2012 Nanoscale Res. Lett. 142 1
[19] Yoo S H, Kum J M and Cho S O 2011 Nanoscale Res. Lett. 6 545
[20] Sharma T, Singhal R, Vishnoi R, Lakshmi G B V S and Biswas S K 2017 Nucl. Instrum. Method B 396 5
[21] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Method B 268 1818
[22] Cook S, Ohkita H, Kim Y, Benson-Smith J J, Bradley D D C and Durrant J R 2007 Chem. Phys. Lett. 445 276
[23] Wang X, Egelhaaf H J, Mack H G, Azimi H, Brabec C J, Meixner A J and Zhang D 2014 Adv. Energy Mater. 4 1400497
[24] Bebensee F, Zhu J F, Baricuatro J H, Farmer J A, Bai Y, Steinruck H P, Campbell C T and Gottfried J M 2010 Langmuir 26 9632
[25] Kuzmany H, Matus M, Burger B and Winter J 1994 Adv. Mater. 6 731
[26] Kumar S, Kumar M, Rathi S, Yadav A, Upadhyaya A, Gupta S K and Singh A 2018 2nd International Conference on Condensed Matter and Applied Physics, November 24-25, 2017, Bikaner, India, p. 100074
[27] Lopez G P, Castner D G and Ratner B D 1991 Surf. Interface Anal. 17 267
[28] Lownsbury J M, Sharp J C, Mann E J and Campbell C T 2015 J. Phys. Chem. C 119 18444
[29] Richter M H, Friedrich D and Schmeißer D 2012 Bionanosci. 2 59
[30] Silva E A, Gregori A, Fernandes J D, Njel C, Dedryvere R, Constantino C J L, Hiorns R C, Lartigau-Dagron C and Olivati C A 2020 Nanotechnol. 31 315712
[31] Sharma T, Singhal R, Vishnoi R, Sharma P, Patra A, Chand S, Lakshmi G and Biswas S K 2016 Nucl. Instrum. Method B 379 176
[32] Wu J H, Yue G T, Xiao Y M, Ye H F, Lin J M and Huang M L 2010 Electrochim. Acta 55 5798
[33] Siengchum T, Isenberg M and Chuang S S C 2013 Fuel. 105 559
[34] Jung S H, Jeong I Y, Han W S, Lee S S and Jung J H 2009 J. Nanosci. Nanotechnol. 9 2777
[35] Ju D, Sun C, Wang H, Wang X, Wu Y, Dong Z and Qiu X 2020 RSC Adv. 10 39572
[36] De Cicco H, Saint-Martin G, Alurralde M and Bernaola O A 1999 Radiat. Meas. 31 77
[37] Morvillo P and Bobeico E 2008 Sol. Energy Mater. Sol. Cells 92 1192
[1] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[2] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[3] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[4] Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields
Shang Shi(石尚), Fa-Cheng Jin(金发成), Bing-Bing Wang(王兵兵). Chin. Phys. B, 2019, 28(2): 023202.
[5] Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study
Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛). Chin. Phys. B, 2019, 28(1): 016301.
[6] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[7] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[8] Probing the structure of multi-center molecules with odd-even high harmonics
Ning Su(苏宁), Shujuan Yu(于术娟), Weiyan Li(李卫艳), Shiping Yang(杨世平), Yanjun Chen(陈彦军). Chin. Phys. B, 2018, 27(5): 054213.
[9] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[10] Theoretical investigation of optical properties and band gap engineering for Zn1-xTMxTe(TM=Fe, Co) alloys by modified Becke—Johnson potential
Q Mahmood, M Yaseen, M Hassan, Shahid M Ramay, Asif Mahmood. Chin. Phys. B, 2017, 26(8): 087803.
[11] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[12] Structures and optical properties of tungsten oxide thin films deposited by magnetron sputtering of WO3 bulk:Effects of annealing temperatures
Zhang Feng (张锋), Wang Hai-Qian (王海千), Wang Song (王松), Wang Jing-Yang (汪竟阳), Zhong Zhi-Cheng (钟志成), Jin Ye (金叶). Chin. Phys. B, 2014, 23(9): 098105.
[13] Molecular structure and analytical potential energy function of SeCO
Zhang Heng (张恒), Tian Duan-Liang (田端亮), Yan Shi-Ying (阎世英). Chin. Phys. B, 2014, 23(9): 093101.
[14] Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen
Zhuo Zu-Liang (卓祖亮), Wang Yong-Sheng (王永生), He Da-Wei (何大伟), Fu Ming (富鸣). Chin. Phys. B, 2014, 23(9): 098802.
[15] Molecular structure dependence of acoustic nonlinearity parameter B/A for silicone oils
Zhang Zhe (张喆), Chen Gong (陈功), Zhang Dong (章东). Chin. Phys. B, 2014, 23(5): 054302.
No Suggested Reading articles found!