CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Evolution of optical properties and molecular structure of PCBM films under proton irradiation |
Guo-Dong Xiong(熊国栋)1,2, Hui-Ping Zhu(朱慧平)1,†, Lei Wang(王磊)1, Bo Li(李博)1,‡, Fa-Zhan Zhao(赵发展)1, and Zheng-Sheng Han(韩郑生)1,2,§ |
1 Key Laboratory of Science and Technology on Silicon Devices, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Low-energy proton irradiation effects on the optical properties and the molecular structure of phenyl-C61-butyric acid methyl ester (PCBM) are studied in this work. The PCBM films are irradiated by 100-keV proton beams with fluences of 5×1012 p/cm2, 5×1013 p/cm2, and 5×1014 p/cm2, respectively. The photoluminescence (PL) peaks of the post-irradiated PCBM films show a progressive decrease in the peak intensity as the proton fluences increase, which can be attributed to the deep defect levels induced by proton irradiation. Additionally, a slight blue-shift in the PL spectrum is also observed at a proton fluence of 5×1014 p/cm2. The underlying mechanism can be traced back to the lift of the lowest unoccupied molecular orbital (LUMO) level, which is caused by the attachment of methoxy radicals on ortho position of the phenyl ring in the post-irradiated PCBM structure. This work is of significance in understanding the radiation hardness and the damage mechanism of the PCBM film in radiation environments, which is essential before it is put into practical application in space.
|
Received: 07 September 2021
Revised: 12 October 2021
Accepted manuscript online:
|
PACS:
|
71.20.Tx
|
(Fullerenes and related materials; intercalation compounds)
|
|
73.61.Wp
|
(Fullerenes and related materials)
|
|
78.30.Na
|
(Fullerenes and related materials)
|
|
78.66.Tr
|
(Fullerenes and related materials)
|
|
Fund: Project supported by the Youth Innovation Promotion Association,Chinese Academy of Sciences,the National Natural Science Foundation of China (Grant No.61874135),and the Foundation of Frontier Science of the Chinese Academy of Sciences (Grant No.ZDBS-LY-JSC015). |
Corresponding Authors:
Hui-Ping Zhu,E-mail:zhuhuiping@ime.ac.cn;Bo Li,E-mail:libo3@ime.ac.cn;Zheng-Sheng Han,E-mail:zshan@ime.ac.cn
E-mail: zhuhuiping@ime.ac.cn;libo3@ime.ac.cn;zshan@ime.ac.cn
|
About author: 2021-10-22 |
Cite this article:
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生) Evolution of optical properties and molecular structure of PCBM films under proton irradiation 2022 Chin. Phys. B 31 057102
|
[1] Mihailetchi V D, van Duren J K J, Blom P W M, Hummelen J C, Janssen R A J, Kroon J M, Rispens M T, Verhees W J H and Wienk M M 2003 Adv. Funct. Mater. 13 43 [2] Tu Y G, Wu J, Xu G N, Yang X Y, Cai R, Gong Q H, Zhu R and Huang W 2021 Adv. Mater. 33 2006545 [3] Yang J, Bao Q, Shen L and Ding L 2020 Nano Energy 76 105019 [4] Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G and Yang Y 2014 Nat. Commun. 5 5404 [5] Hao D, Zou J and Huang J 2020 InfoMat. 2 139 [6] Xiong G, Qin Z, Li B, Wang L, Zhang X, Zheng Z, Zhu H, Zhao S, Gao J, Li B, Yang J, Li X, Luo J, Han Z, Liu X and Zhao F 2021 J. Mater. Chem. C 9 2095 [7] Yuan Y and Huang J 2016 Acc. Chem. Res. 49 286 [8] Shao Y H, Xiao Z G, Bi C, Yuan Y B and Huang J S 2014 Nat. Commun. 5 5784 [9] Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P and Sargent E H 2015 Nat. Commun. 6 7081 [10] Zhong Y, Hufnagel M, Thelakkat M, Li C and Huettner S 2020 Adv. Funct. Mater. 30 1908920 [11] Liu Y T, Jia R X, Wang Y C, Hu Z Y, Zhang Y M, Pang T Q, Zhu Y J and Luan S Z 2017 ACS Appl. Mater. Interfaces 9 15638 [12] Kwon K C, Hong K, Van Le Q, Lee S Y, Choi J, Kim K B, Kim S Y and Jang H W 2016 Adv. Funct. Mater. 26 4213 [13] Ran C, Xu J, Gao W, Huang C and Dou S 2018 Chem. Soc. Rev. 47 4581 [14] Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G and Neitzert H C 2016 Adv. Mater. 28 8726 [15] Lang F, Jost M, Bundesmann J, Denker A, Albrecht S, Landi G, Neitzert H C, Rappich J and Nickel N H 2019 Energy Environ. Sci. 12 1634 [16] Xiao W, Yang J, Xiong S, Li D, Li Y, Tang J, Duan C and Bao Q 2019 Sol. RRL. 1900394 [17] Schwank J R, Shaneyfelt M R and Dodd P E 2013 IEEE Trans. Nucl. Sci. 60 2074 [18] Yoo S H, Kum J M, Ali G, Heo S H and Cho S O 2012 Nanoscale Res. Lett. 142 1 [19] Yoo S H, Kum J M and Cho S O 2011 Nanoscale Res. Lett. 6 545 [20] Sharma T, Singhal R, Vishnoi R, Lakshmi G B V S and Biswas S K 2017 Nucl. Instrum. Method B 396 5 [21] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Method B 268 1818 [22] Cook S, Ohkita H, Kim Y, Benson-Smith J J, Bradley D D C and Durrant J R 2007 Chem. Phys. Lett. 445 276 [23] Wang X, Egelhaaf H J, Mack H G, Azimi H, Brabec C J, Meixner A J and Zhang D 2014 Adv. Energy Mater. 4 1400497 [24] Bebensee F, Zhu J F, Baricuatro J H, Farmer J A, Bai Y, Steinruck H P, Campbell C T and Gottfried J M 2010 Langmuir 26 9632 [25] Kuzmany H, Matus M, Burger B and Winter J 1994 Adv. Mater. 6 731 [26] Kumar S, Kumar M, Rathi S, Yadav A, Upadhyaya A, Gupta S K and Singh A 2018 2nd International Conference on Condensed Matter and Applied Physics, November 24-25, 2017, Bikaner, India, p. 100074 [27] Lopez G P, Castner D G and Ratner B D 1991 Surf. Interface Anal. 17 267 [28] Lownsbury J M, Sharp J C, Mann E J and Campbell C T 2015 J. Phys. Chem. C 119 18444 [29] Richter M H, Friedrich D and Schmeißer D 2012 Bionanosci. 2 59 [30] Silva E A, Gregori A, Fernandes J D, Njel C, Dedryvere R, Constantino C J L, Hiorns R C, Lartigau-Dagron C and Olivati C A 2020 Nanotechnol. 31 315712 [31] Sharma T, Singhal R, Vishnoi R, Sharma P, Patra A, Chand S, Lakshmi G and Biswas S K 2016 Nucl. Instrum. Method B 379 176 [32] Wu J H, Yue G T, Xiao Y M, Ye H F, Lin J M and Huang M L 2010 Electrochim. Acta 55 5798 [33] Siengchum T, Isenberg M and Chuang S S C 2013 Fuel. 105 559 [34] Jung S H, Jeong I Y, Han W S, Lee S S and Jung J H 2009 J. Nanosci. Nanotechnol. 9 2777 [35] Ju D, Sun C, Wang H, Wang X, Wu Y, Dong Z and Qiu X 2020 RSC Adv. 10 39572 [36] De Cicco H, Saint-Martin G, Alurralde M and Bernaola O A 1999 Radiat. Meas. 31 77 [37] Morvillo P and Bobeico E 2008 Sol. Energy Mater. Sol. Cells 92 1192 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|