Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057701    DOI: 10.1088/1674-1056/ac3736
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition

Ze Feng(冯泽)1, Yitong Wang(王一同)1, Jilong Hao(郝继龙)2, Meiyi Jing(井美艺)1, Feng Lu(卢峰)1, Weihua Wang(王维华)1, Yahui Cheng(程雅慧)1, Shengkai Wang(王盛凯)2, Hui Liu(刘晖)1, and Hong Dong(董红)1,†
1 Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin 300350, China;
2 High-Frequency High-Voltage Device and Integrated Circus R&D Center, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
Abstract  A large amount of ultra-low-power consumption electronic devices are urgently needed in the new era of the internet of things, which demand relatively low frequency response. Here, atomic layer deposition has been utilized to fabricate the ion polarization dielectric of the LiPON-Al2O3 hybrid structure. The LiPON thin film is periodically stacked in the Al2O3 matrix. This hybrid structure presents a frequency-dependent dielectric constant, of which k is significantly higher than the aluminum oxide matrix from 1 kHz to 200 kHz in frequency. The increased dielectric constant is attributed to the lithium ions shifting locally upon the applied electrical field, which shows an additional polarization to the Al2O3 matrix. This work provides a new strategy with promising potential to engineers for the dielectric constant of the gate oxide and sheds light on the application of electrolyte/dielectric hybrid structure in a variety of devices from capacitors to transistors.
Keywords:  high k dielectric      atomic layer deposition      polarization  
Received:  10 August 2021      Revised:  01 November 2021      Accepted manuscript online: 
PACS:  77.22.Ch (Permittivity (dielectric function))  
  77.55.D-  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos.2018YFB2200500 and 2018YFB2200504) and the National Natural Science Foundation of China (Grant Nos.22090010,22090011,and 61504070).
Corresponding Authors:  Hong Dong,E-mail:donghong@nankai.edu.cn     E-mail:  donghong@nankai.edu.cn
About author:  2021-11-6

Cite this article: 

Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红) Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition 2022 Chin. Phys. B 31 057701

[1] Narita F and Fox M 2018 Adv. Eng. Mater. 20 1700743
[2] Wang B, Huang W, Chi L, Hashimi A M, Marks T J and Facchetti A 2018 Chem. Rev. 118 5690
[3] Braga M H, Oliveira J E, Kai T, Murchison A J, Bard A J and Goodenough J B 2018 J. Am. Chem. Soc. 140 17968
[4] Chourasia N K, Sharma A, Acharya V, Pal N, Biring S and Pal B N 2019 J. Alloys Compd. 777 1124
[5] Robertson J and Wallace R M 2015 Mater. Sci. Eng. R Rep. 88 1
[6] Ortiz R P, Facchetti A and Marks T J 2010 Chem. Rev. 110 205
[7] Liu Y, Guan P, Zhang B, Falk M L and Katz H E 2013 Chem. Mater. 25 3788
[8] Sun J, Qian C, Huang W, Yang J and Gao Y 2014 Phys. Chem. Chem. Phys. 16 7455
[9] Lu W, Peng J, Yang K, Lan L, Niu Q and Cao Y 2007 Chin. Phys. B 16 1145
[10] Wei L, Huang W, Fang X, Wang X, Mou P, Shao F and Gu X 2020 IEEE Trans. Electron Devices 67 5532
[11] Xu W, Chen L, Han S, Cao P, Fang M, Liu W, Zhu D and Lu Y 2020 J. Phys. Chem. C 124 8015
[12] Pujar P, Gupta B, Sengupta P, Gupta D and Mandal S 2019 J. Eur. Ceram. Soc. 39 4473
[13] Liu R, He Y, Jiang S, Zhu L, Chen C, Zhu Y and Wan Q 2021 Chin. Phys. B 30 058102
[14] Sharma A, Chourasia N K, Sugathan A, Kumar Y, Jit S, Liu S W, Pandey A, Biring S and Pal B N 2018 J. Mater. Chem. C 6 790
[15] Xu J, Xie W, Chen Y, Wang L and Ma Q 2020 Chin. Phys. B 29 128703
[16] Pal B N, Dhar B M, See K C and Katz H E 2009 Nat. Mater. 8 898
[17] Clayton D R, Lepage D, Woods K N, Page C J and Lonergan M C 2020 ACS Appl. Mater. Interfaces 12 1241
[18] Pal N, Sharma A, Acharya V, Chourasia N K, Biring S and Pal B N 2019 ACS Appl. Electron. Mater. 2 25
[19] Sharma A, Chourasia N K, Pal N, Biring S and Pal B N 2019 J. Phys. Chem. C 123 20278
[20] Han S and Mullins C B 2020 ChemSusChem 13 5433
[21] Robertson J 2006 Rep. Prog. Phys. 69 327
[22] Nisula M, Shindo Y, Koga H and Karppinen M 2015 Chem. Mater. 27 6987
[23] Kozen A C, Pearse A J, Lin C, Noked M and Rubloff G W 2015 Chem. Mater. 27 5324
[24] Pearse A J, Schmitt T E, Fuller E J, ElGabaly F, Lin C, Gerasopoulos K, Kozen A C, Talin A A, Rubloff G and Gregorczyk K E 2017 Chem. Mater. 29 3740
[25] Comstock D J and Elam J W 2013 J. Phys. Chem. C 117 1677
[26] Kozen A C, Pearse A J, Lin C F, Schroeder M A, Noked M, Lee S B and Rubloff G W 2014 J. Phys. Chem. C 118 27749
[27] Nimisha C S, Rao G M, Munichandraiah N, Natarajan G and Cameron D C 2011 Solid State Ion. 185 47
[28] Ylivaara O M E, Liu X, Kilpi L, Lyytinen J, Schneider D, Laitinen M, Julin J, Ali S, Sintonen S, Berdova M, Haimi E, Sajavaara T, Ronkainen H, Lipsanen H, Koskinen J, Hannula S and Puurunen R L 2014 Thin Solid Films 552 124
[29] Kwok R XPSPEAK 4.1 http://xpspeak.software.onformer.com/4.1/
[30] Cao X S, Ji G F, Luo B C and Li F 2013 Chin. Phys. B 22 087702
[31] Li X D, Liu H, Wu J G, Liu G, Xiao D Q and Zhu J G 2015 Chin. Phys. B 24 107701
[32] Tripathi P K, Vikram K, Tiwari M and Shriram A 2021 Chin. Phys. B 30 064208
[33] Liu X G, Jiang J J, Geng D Y, Li B Q, Han Z, Liu W and Zhang Z D 2009 Appl. Phys. Lett. 94 053119
[34] Zhang F, Hao F, Zeng B, Qian N, Huang X and Yang D 2016 Chin. Phys. B 25 040201
[35] Ishai P B, Talary M S, Caduff A, Levy E and Feldman Y 2013 Meas. Sci. Technol. 24 102001
[36] Sharma A, Chourasia N K, Acharya V, Pal N, Biring S, Liu S W and Pal B N 2019 Electron. Mater. Lett. 16 22
[37] Liu Y, Diallo A and Katz H E 2015 Appl. Phys. Lett. 106 112906
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
No Suggested Reading articles found!