Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057801    DOI: 10.1088/1674-1056/ac439e

Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method

Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad
Department of Physics, International Islamic University, Islamabad 44000, Pakistan
Abstract  We explore the photoluminescence properties of zinc silicate (Zn2SiO4) nanostructures synthesized by vapor-liquid-solid (VLS) mode of growth using three different catalysts (Sn, Ag, and Mn). Different catalysts significantly influence the growth rate which in turn has an impact on the structure and hence the photoluminescence of the prepared zinc silicate nanostructures. Zn2SiO4 has a wide bandgap of about 5.5 eV and in its pure form, it does not emit in visible region due to its inner shell electronic transitions between the 3d5 energy levels. However, the incorporation of different catalysts (Sn, Ag and Mn) at different growth temperatures into the Zn2SiO4 crystal growth kinetics provides wide visible spectral range of photoluminescence (PL) emissions. PL analysis shows broad multi-band spectrum in the visible region and distinct colors (red, yellow, green, blue, cyan and violet) are obtained depending on the crystalline structure of the prepared nanostructures. The allowed transitions due to the effect of different catalysts on zinc silicate lattice offer a huge cross-section of absorption that generates strong photoluminescence. The correlation between the structural and optical properties of the synthesized nanostructures is discussed in detail. The synthesized photoluminescent nanostructures have potential applications in solid-state lighting and display devices.
Keywords:  nanostructures      vapor-liquid-solid growth mode      photoluminescence spectra      fluorescence microscopy  
Received:  14 September 2021      Revised:  28 November 2021      Accepted manuscript online: 
PACS:  62.23.-c (Structural classes of nanoscale systems)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  78.55.-m (Photoluminescence, properties and materials)  
  78.70.En (X-ray emission spectra and fluorescence)  
Fund: The authors acknowledge the technical support provided by the COMSATS University and National Centre for Physics,Islamabad Pakistan.
Corresponding Authors:  Imran Murtaza,     E-mail:
About author:  2021-12-16

Cite this article: 

Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method 2022 Chin. Phys. B 31 057801

[1] Kim B H, Hackett M J, Park J and Hyeon T 2014 Chem. Mater. 26 59
[2] Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y and Golberg D 2011 Prog. Mater. Sci. 56 175
[3] Wang H and Rogach A L 2014 Chem. Mater. 26 123
[4] Zhai T, Fang X, Liao M, Xu X, Zeng H, Yoshio B and Golberg D 2009 Sensors 9 6504
[5] Xu S and Wang Z L 2011 Nano Res. 4 1013
[6] Schlögl R and Abd Hamid S B 2004 Angewandte Chem. Int. Edi. 43 1628
[7] Palmer L C and Stupp S I 2008 Accoun. Chem. Res. 41 1674
[8] Yang Y, Zhuang Y, He Y, Bai B and Wang X 2010 Nano Res. 3 581
[9] Rasdi N M, Fen Y W and Omar N A S 2017 Optik 149 409
[10] Rivera Enríquez C E, Fernández Osorio A and Chávez Fernández J 2016 J. Alloys Compd. 688 775
[11] Su F, Ma B, Ding K, Li G, Wang S, Chen W and McCready D E 2006 J. Lumines. 116 117
[12] Brown J S 1936 Econ. Geology 31 331
[13] Boni M and Large D 2003 Econ. Geology 98 715
[14] Minami T 2003 Solid-State Electron. 47 2237
[15] Feldmann C, Jüstel T, Ronda C R and Schmidt P J 2003 Adv. Funct. Mater. 13 511
[16] Robbins D J, Caswell N S, Avouris P, Giess E A, Chang I F and Dove D B 1985 J. Electrochem. Soc. 132 2784
[17] Sreekanth Chakradhar R P, Nagabhushana B M, Chandrappa G T, Ramesh K P and Rao J L 2004 J. Chem. Phys. 121 10250
[18] Krsmanović R M, Antić ž, Mitrić M, Dramićanin M D and Brik M G 2011 Appl. Phys. A 104 483
[19] Dong M, Yue Z, Zhuang H, Meng S and Li L 2008 J. Amer. Ceramic Soc. 91 3981
[20] Chen W, Liang H, Ding X, Liu Y and Su Q 2011 Appl. Phys. B 102 699
[21] An J S, Noh J H, Cho I S, Roh H S, Kim J Y, Han H S and Hong K S 2010 J. Phys. Chem. C 114 10330
[22] Yang Y, Zhuang Y, He Y, Bai B and Wang X 2010 Nano Res. 3 581
[23] Kokotov M, Bar Nachum S, Edri E and Hodes G 2010 J. Amer. Chem. Soc. 132 309
[24] Takesue M, Shimoyama K, Shibuki K, Suino A, Hakuta Y, Hayashi H and Smith Jr R L 2009 J. Supercritical Fluids 49 351
[25] Fang X S, Ye C H, Zhang L D, Wang Y H and Wu Y C 2005 Adv. Funct. Mater. 15 63
[26] Diao C C and Yang C F 2010 Ceramics Int. 36 1653
[27] Vasanthi M, Ravichandran K, Begum N J, Muruganantham G, Snega S, Panneerselvam A and Kavitha P 2013 Superlatt. Microstruct. 55 180
[28] Xie X, Chen J, Song Y, Zhou X, Zheng K, Zhang X and Sheng Y 2017 J. Lumines. 187 564
[29] Thiyagarajan P, Kottaisamy M and Rao M R 2007 Scripta Mater. 57 433
[30] Lv Y, Zuo R and Yue Z 2013 Maters. Res. Bulletin 48 2011
[31] Bekturganov N S, Bissengaliyeva M R and Gogol D B 2013 Eurasian Chem. Techn. J. 15 227
[32] Liu H, Moronta D, Li L, Yue S and Wong S S 2018 Phys. Chem. Chem. Phys. 20 10086
[33] Kortov V S, Sergeeva K A, Pustovarov V A and Rempel A A 2017 J. Surface Invest. 11 727
[34] Masai H, Hino Y, Yanagida T, Fujimoto Y, Fukuda K and Yoko T 2013 J. Appl. Phys. 114 083502
[1] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[2] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[3] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[4] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[5] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[6] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[7] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[8] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[9] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[10] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[11] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
[12] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[13] Recent progress on photoluminescence from plasmonic nanostructures: Phenomenon, mechanism, and application
Tingting Yin(尹婷婷), Liyong Jiang(蒋立勇), Zexiang Shen(申泽骧). Chin. Phys. B, 2018, 27(9): 097803.
[14] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[15] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
No Suggested Reading articles found!